本文聚焦水下航行器的通海管道,将流体参数变化(包含管道负载压力、脉动频率、泵流量等)、通海口结构形式以及孔隙率设定为关键研究变量,充分考虑脉动激励因素,运用CFD数值仿真方法并结合UDF技术将脉动压力编译到流体,深入剖析通海管道内部复杂流场特性,并基于声类比理论,采用自动匹配层(AML)技术,开展声学特性研究。通过对比压力脉动下的流场压力、流噪声声压级等关键指标。研究发现,流体参数变化对通海口流噪声影响显著,负载压力、脉动频率、泵流量增加时,压力分布的不均匀性加剧,通海口流噪声声压级也随之升高。不同通海口结构形式在流速、声压级分布及降噪效果上存在明显差异,高频段格栅形与菱形降噪优势明显。孔隙率变化也会显著改变流场与噪声特性,随着孔隙率的增加,通海口流噪声整体呈下降趋势。本研究成果可以为水下航行器的工程实践应用提供参考。
This paper focus on the through-sea pipeline of the underwater vehicle, set the changes of fluid parameters (including pipeline loading pressure, pulsation frequency, pump flow rate, etc.), the structural form of the through-sea port and the porosity as the key research variables, take the pressure pulsation excitation factors into full consideration, and utilize the numerical simulation method of CFD combined with the UDF technology to compile the pulsation pressure into the fluid, so as to analyze the characteristics of the complex flow field inside the through-sea pipeline in-depth. Based on the theory of acoustic analogy, automatic matching layer (AML) technology is adopted to carry out the research on acoustic characteristics. By comparing the flow field pressure under pressure pulsation, flow noise sound pressure level and other key indexes, it is found that: the change of fluid parameters has a significant impact on the flow noise of the through-hole, and when the load pressure, pulsation frequency, and pump flow rate increase, the inhomogeneity of the pressure distribution is intensified, and the sound pressure level of the flow noise of the through-hole is also elevated. There are obvious differences in the flow rate, sound pressure level distribution and noise reduction effect of different through-hole structure forms, and the noise reduction advantages of grating and diamond shape are obvious in the high frequency band. The change of porosity will also significantly change the flow field and noise characteristics, with the increase of porosity, the overall trend of the through-hole flow noise decreases. The results of this research can provide a reference for the application of underwater vehicles in engineering practice.
2025,47(22): 22-31 收稿日期:2025-2-7
DOI:10.3404/j.issn.1672-7649.2025.22.004
分类号:U662
基金项目:国家自然科学基金资助项目(52241102)
作者简介:王影(1996 – ),女,硕士研究生,研究方向为振动与噪声控制
参考文献:
[1] KOJMA, EIICHI, NAGAKURA, et al. Characteristics of fluidborne noise generatedby fluid power pumps : lst report, mechanism of generation of pressure pulsationin axial piston pump[J]. Bulletin of JSME, 1982, 25(199): 46-53.
[2] 吴登昊, 袁寿其, 任芸, 等. 管道泵压力脉动及振动的研究[J]. 华中科技大学学报(自然科学版), 2013(4): 16-20.
[3] 苏勇, 何江, 张淼, 等. 外源激励作用下火箭发动机输流管路振动特性研究[J]. 振动与冲击, 2024, 43(2): 60-70+207.
[4] 刘裕粲, 罗小辉, 常文奇. 船舶疏水系统流量压力脉动特性研究[J]. 机床与液压, 2024, 52(6): 103-109.
[5] 熊雄, 周知进, 朱目成, 等. 压力脉动作用下管道的流固耦合瞬态分析[J]. 机床与液压, 2019, 47(16): 118-122.
[6] 马吉恩. 轴向柱塞泵流量脉动及配流盘优化设计研究[D]. 浙江: 浙江大学, 2009.
[7] YIN F, KONG X, JI H, et al. Research on the pressure and flow characteristics of seawater axial piston pump considering cavitation for reverse osmosis desalination system[J]. Desalination, 2022, 540: 115998.
[8] 徐建龙, 张盛, 潘国雄, 等. 舷侧阀通海口结构形式对声学性能的影响[J]. 中国舰船研究, 2016, 11(2): 90-97.
[9] 孙铁志, 谢勃汉, 苗天丞, 等. 流激格栅孔腔自噪声特性数值计算研究[J]. 振动与冲击, 2022, 41(20): 235-243.
[10] 李宁, 王献忠, 林鸿洲, 等. 循环水管路系统的流噪声实验研究[J]. 振动. 测试与诊断, 2023, 43(5): 909-914+1037.
[11] 朱思敏. 基于流固耦合的船舶管系弯管流动声学特性研究[D]. 北京: 北京交通大学, 2022.
[12] 徐国栋, 孙启, 郑荣. 基于FEM/AML的船舶海水冷却系统出海管路流噪声预报[J]. 舰船科学技术, 2021, 43(7): 102-106.
[13] 刘小侠. 船舶海水管路系统噪声特性研究[D]. 武汉: 华中科技大学, 2022.