大型运输船双层底结构作为承载货重的核心部件,其传统设计存在材料冗余的突出问题。本文针对船体结构的轻量化需求,通过Matlab编程对同一结构进行优化设计,系统对比变密度法、水平集法和BESO方法在高双层底实肋板中的适用性。研究中确保3种方法在工程条件上的一致性,包括相同的网格数、边界条件和体积分数范围。结果表明,BESO方法在处理复杂约束条件和实现结构边界的清晰性方面表现最优,优化过程更稳定,优化后的结构表现出了较高的强度,在实肋板结构拓扑优化设计过程中适用性更强。
The double bottom structure of large transport ships serves as a core component for bearing cargo weight, and its traditional design has prominent issues with material redundancy. This study addresses the lightweight requirements of the hull structure by optimizing the design of the same structure through Matlab programming. It systematically compares the applicability of the variable density method, level set method, and BESO method in high double bottom solid ribs. The study ensures consistency among the three methods in engineering conditions, including the same number of grids, boundary conditions, and volume fraction ranges. The results indicate that the BESO method performs optimally in handling complex constraint conditions and achieving clarity in structural boundaries. The optimization process is more stable, and the optimized structure exhibits high strength, making it more applicable in the topology optimization design process of solid rib structures.
2025,47(22): 46-52 收稿日期:2025-3-3
DOI:10.3404/j.issn.1672-7649.2025.22.007
分类号:U663
基金项目:国家自然科学基金资助项目(52061135107)
作者简介:张彬滨(2000 – ),男,硕士研究生,研究方向为船体结构强度
参考文献:
[1] 张聪, 贾德君, 李范春, 等. 三体船横舱壁拓扑优化设计及力学分析[J]. 哈尔滨工程大学学报, 2020, 41(6): 805-811.
ZHANG C, JIA D J, LI F C, et al. Topology optimization design and mechanical property analysis of the transverse bulkhead of a trimaran[J]. Journal of Harbin Engineering University, 2020, 41(6): 805-811.
[2] 吴贝尼. 船舶中横剖面拓扑优化研究及程序系统开发[D]. 上海: 上海交通大学, 2020.
[3] 郭德松. 基于轻量化的船体构件开孔拓扑优化设计[D]. 镇江: 江苏科技大学, 2021.
[4] 蒋垣腾, 赵敏. 基于参数化水平集方法的水下耐压结构的拓扑优化[J]. 船舶力学, 2022, 26(3): 400-413.
JIANG Y T, ZHAO M. Topology optimization of underwater pressure structure design with parametric level set method[J]. Journal of Ship Mechanics, 2022, 26(3): 400-413.
[5] 伍勇, 马炳杰, 王舒楠. 某V型高速船用柴油机油底壳结构轻量化设计[J]. 船舶工程, 2023, 45(10): 36-42.
WU Y, MA B J, WANG S N. Lightweight design of oil pan for V-Type high-speed marine diesel engine[J]. Ship Engineering, 2023, 45(10): 36-42.
[6] 于海, 杨慧斌, 茅健, 等. 基于SIMP变密度法的结构拓扑优化及应用[J]. 工程塑料应用, 2024, 52(10): 91-99.
YU H, YANG H B, MAO J, et al. Structural topology optimization based on SIMP variable density method and its application[J]. Engineering Plastics Application, 2024, 52(10): 91-99.
[7] 付君健. 基于参数化水平集的多孔结构拓扑优化方法研究[D]. 武汉: 华中科技大学, 2019.
[8] HUANG XD. XIE Y M. Convergent and mesh–independent solutions for the bi–directional evolutionary structual optimization method[J]. Finite Elements in Analysis and Design, 2007, 43(14): 1039-1049.
[9] 汤朋山, 杜文风, 李少龙, 等. 基于改进双向渐进结构优化法的钢节点拓扑优化研究[J]. 计算力学学报, 2024, 41(6): 991-997.
TANG P S, DU W F, LI S L, et al. Research on topology optimization of steel joints based on improved bi-directional progressive structural optimization method[J]. Chinese Journal of Computational Mechanics, 2024, 41(6): 991-997.
[10] 陶鹏, 范慧丽. 多工况拓扑优化算法在大型运输船高双层底实肋板结构设计中的应用[J]. 舰船科学技术, 2023, 45(23): 13-18.
TAO P, FAN H L. The application of multi-cases topology optimization algorithm in high plate floor design scheme of large transport vessel[J]. Ship Science and Technology, 2023, 45(23): 13-18.
[11] SIGMUND O. A 99 line topology optimization code written in Matlab[J]. Structural and Multidisciplinary Optimization, 2001, 21(2): 120-127.
[12] ANDREASSEN E, CLAUSEN A, SCHEVENELS M, et al. Efficient topology optimization in Matlab using 88 lines of code[J]. Structural and Multidisciplinary Optimization, 2011, 43(1): 1-16.
[13] CHALLIS V J. A discrete level-set topology optimization code written in Matlab[J]. Structural and Multidisciplinary Optimization, 2010, 41(3): 453-464.
[14] XIA L, XIA Q, HUANG X, et al. Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review[J]. Archives of Computational Methods in Engineering, 2018, 25(2): 437-478.
[15] HAN Y, XU B, LIU Y. An efficient 137-line Matlab code for geometrically nonlinear topology optimization using bi-directional evolutionary structural optimization method[J]. Structural and Multidisciplinary Optimization, 2021, 63(5): 2571-2588.