为了探究气液两相条件下流型对离心泵出口压力脉动的影响规律,搭建离心泵气液两相流试验台,对比转速ns=78的离心泵进行了可视化试验,获得不同进口气体体积分数IGVF(Inlet Gas Volume Fraction)、不同清水流量下,模型泵的能量特性、出口压力脉动信号以及气液两相流型。研究结果表明,额定流量时,进口气体体积分数的增加导致模型泵内气泡的聚集和流型的演变,从泡状流逐步过渡到分离流;同时模型泵出口压力脉动呈现增强的趋势,叶轮转动频率(Axis Passing Frequency,APF)对应的压力脉动系数从IGVF=0.3%下的0.0033上升至IGVF=4.5%下的0.0074。IGVF=1.7%工况下,流量的增加使得气泡分布逐渐分散,流型由气囊流变为凝聚气泡流,泵出口压力脉动逐渐减弱,流动稳定性得到改善。在泡状流和凝聚气泡流阶段,泵的能量特性曲线斜率保持稳定,泵出口压力脉动的主频为叶片通过频率(Blade Passing Frequency,BPF);而在气囊流和分离流状态下,能量特性曲线斜率显著增加,主频转变为APF。结果可为离心泵运行状态的监测提供依据。
A two-phase flow test platform for centrifugal pump was constructed to explore the influence regularity of the flow pattern on the pressure pulsation characteristics under gas-liquid two-phase condition. Visualization experiments were carried out on a centrifugal pump with a specific speed of ns=78. The energy characteristics, pressure pulsation signals and flow patterns of the model pump were obtained under different IGVFs and flow rates. The research results indicate that at the rated flow rate, with the increase of IGVF, the dispersed bubbles gradually gather and the flow pattern gradually changes from bubble flow to segregated flow. At the same time, the outlet pressure pulsation of the model pump shows an aggravating trend. The pressure pulsation coefficient corresponding to APF rises from 0.0033 when IGVF is 0.3% to 0.0074 when IGVF is 4.5%. When IGVF is 1.7%, with the increase of flow rate, the gathered bubbles gradually disperse and the flow pattern gradually changes from gas pocket flow to agglomerated bubble flow. At the same time, the outlet pressure pulsation of the pump gradually weakens, and the flow stability is improved. In the stage of bubble flow and agglomerated bubble flow, the slope of the pump energy characteristic curve remains stable, and the main frequency of the pump outlet pressure pulsation is BPF; while in the stage of gas pocket flow and segregated flow, the slope of the pump energy characteristic curve increases significantly, and the main frequency of the pump outlet pressure pulsation changes to APF. The results can be used as important bases for flow state monitoring.
2025,47(22): 61-67 收稿日期:2025-2-24
DOI:10.3404/j.issn.1672-7649.2025.22.009
分类号:U664.5+8;TH311
基金项目:南通市社会民生科技计划课题(MSZ2023001)
作者简介:陆虎(1974 – ),男,教授,研究方向为轮机工程技术
参考文献:
[1] 袁寿其, 刘厚林. 泵类流体机械研究进展与展望[J]. 排灌机械, 2007, 25(6): 46-51.
YUAN S Q, LIU H L. Research progress and prospect on fluid machinery-pumps[J]. Drainage and Irrigation Machinery, 2007, 25(6): 46-51.
[2] 罗兴锜, 吴大转. 泵技术进展与发展趋势[J]. 水力发电学报, 2020, 39(6): 1-17.
LUO X Q, WU D Z. Progress and developing trends in pump technology[J]. Journal of Hydroelectric Engineering, 2020, 39(6): 1-17.
[3] 徐声海, 郭超, 赵虎坡, 等. 舰船用泵转子动力学特性研究[J]. 舰船科学技术, 2024, 46(17): 34-37.
XU H S, GUO C, ZHAO H P, et al. Research on dynamic characteristics of marine pump rotor[J]. Ship Science and Technology, 2024, 46(17): 34-37.
[4] PINEDA H, BIAZUSSIB J, LÓPEZB F, et al. Phase distribution analysis in an Electrical Submersible Pump(ESP)inlet handling water-air two-phase flow using Computational Fluid Dynamics(CFD)[J]. Journal of Petroleum Science and Engineering, 2016, 139: 49-61.
[5] ALI A, SI Q, YUAN J, et al. Investigation of energy performance, internal flow and noise characteristics of miniature drainage pump under water–air multiphase flow: design and part load conditions[J]. International Journal of Environmental Science and Technology, 2022, 19(8): 7661-7678.
[6] 苏筱斌, 徐强, 杨晨宇, 等. 离心泵内气液两相流动的数值模拟与实验研究[J]. 工程热物理学报, 2024, 45(8): 2396-2402.
SU X B, XU Q, YANG C Y, et al. Numerical simulation and experimental study of gas-liquid two-phase flow in a centrifugal pump[J]. Journal of Engineering Thermophysics, 2024, 45(8): 2396-2402.
[7] 肖文扬, 谭磊. 叶片式气液混输泵研究进展综述[J]. 水力发电学报, 2020, 39(5): 108-120.
XIAO W Y, TAN L. Review on research of rotodynamic multiphase pumps[J]. Journal of Hydroelectric Engineering, 2020, 39(5): 108-120.
[8] TREVISAN F, PRADO M. Experimental investigation of the viscous effect on two-phase-flow patterns and hydraulic performance of electrical submersible pumps[J]. Journal of Canadian Petroleum Technology, 2011, 50(4): 45-52.
[9] VERDE M W, BIAZUSSI J L, SASSIM N A, et al. Experimental study of gas-liquid two-phase flow patterns within centrifugal pumps impellers[J]. Experimental Thermal and Fluid Science, 2017, 85: 37-51.
[10] CUBAS J, STEL H, OFUCHI E M, et al. Visualization of two-phase gas-liquid flow in a radial centrifugal pump with a vaned diffuser[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106848.
[11] 贺登辉, 张振铎, 常壮, 等. 泡状入流条件下离心泵喘振特性试验研究[J]. 机械工程学报, 2022, 58(10): 289-297.
HE D H, ZHANG Z D, CHANG Z, et al. Experimental investigation on surging characteristics of centrifugal pump under bubble inflow conditions[J]. Journal of Mechanical Engineering, 2022, 58(10): 289-297.
[12] CARIDAD J, KENYERY F. CFD analysis of Electric Submersible Pumps (ESP) handling two-phase mixtures[J]. Journal of Energy Resources Technology, 2004, 126(2): 99-104.
[13] 罗旭, 宋文武, 万伦, 等. 气液两相条件下含气率对高速离心泵的影响研究[J]. 中国农村水利水电, 2020, (3): 174-178.
LUO X, SONG W W, WAN L, et al. Research on the influence of gas volume fraction on high-speed centrifugal pumps under gas-liquid two-phase conditions[J] China rural water and hydropower, 2020(3): 174-178.
[14] 李智豪, 张文武, 祝宝山, 等. 气泡直径对气液混输泵流动特性影响的数值研究[J]. 水动力学研究与进展A辑, 2023, 38(6): 836-841.
LI Z H, ZHANG W W, ZHU B S, et al. Numerical study of influence of bubble diameter on flow characteristics of multiphase pump handling gas-liquid flow[J]. Chinese Journal of Hydrodynamics, 2023, 38(6): 836-841.
[15] 杜欣来. 离心泵内气液两相流试验测试及气泡多尺寸数值模拟[D]. 镇江: 江苏大学, 2021.
[16] 施卫东, 陈成, 谭林伟, 等. 单叶片离心泵水力诱导径向力的试验研究[J]. 振动与冲击, 2022, 41(2): 185-192.
SHI W D, CHEN C, TAN L W, et al. Experimental study on the single blade centrifugal pump radial force[J]. Journal of Vibration and Shock, 2022, 41(2): 185-192.
[17] 司乔瑞, 夏欣, 武凯鹏, 等. 应急供水多级泵意外停机水力过渡过程瞬态特性[J]. 农业工程学报, 2024, 40(4): 72-81.
SI Q R, XIA X, WU K P, et al. Transient characteristics of the hydraulic transition process of emergency water supply multi-stage pump with unexpected shutdown[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(4): 72-81.