处于滑行状态的滑行艇在波浪中运动的计算一直是滑行艇水动力特性研究的重点和难点。针对高速滑行艇,基于2D+T理论结合对称楔形体入水砰击模型,本文给出修正后的附加质量系数表达式,详细推导并建立滑行艇在迎浪中的非线性时域运动方程,自主开发数值计算程序,并以Fridsma滑行艇作为验证算例,开展高速滑行艇在迎浪规则波中的运动响应计算研究。本研究探讨滑行艇纵向离散剖面数量对运动结果的影响,确定合适的纵向离散剖面数量,选取傅汝德数为Fn为0.6和1.2工况,计算滑行艇在迎浪规则波中的运动响应结果并与试验数据进行了对比,验证所开发的时域运动程序的准确性。滑行艇高速航行时的平衡位置在静浮位置以上,体现了滑行艇高速滑行过程中垂向水动升力的影响。
The wet surface of the hull compared to the results of statically floating is significantly different. Calculating the motion of high-speed planing hull in waves has always been a focus and challenge in the study of hydrodynamic characteristics. For high-speed planing hull, based on the 2D+T theory and combined with the symmetrical wedge-type impact model, an expression for the corrected added mass coefficient is given, and the nonlinear time-domain motion equation of a planing hull in head wave is established in detail. A numerical computation program is developed independently, and the Fridsma hull is selected as a validation case to conduct investigation on the motion response of high-speed planing hull in head wave. The effects of the number of longitudinal discretization sections on the results are explored, and an appropriate number of longitudinal discretization sections is determined. The motion response of the planing hull in regular wave is calculated for two conditions with Froude numbers of Fn=0.6 and 1.2, and the results are compared with experimental data to verify the accuracy of the developed time-domain motion program. The equilibrium position of high-speed planing hull during navigation is above the static floating position, reflecting the influence of hydrodynamic lift force during high-speed operation.
2025,47(22): 68-74 收稿日期:2025-2-27
DOI:10.3404/j.issn.1672-7649.2025.22.010
分类号:U661.3
基金项目:国家自然科学基金联合基金项目“叶企孙”科学基金资助项目(U2141228)
作者简介:王慧(1994- ),男,博士,工程师,研究方向为船舶运动
参考文献:
[1] 蒋一. 断级与槽道耦合作用下高速滑行艇水气动力特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[2] 别所正利, 小松正彦, 安生正明. 高速艇の规则波中纵运动の研究[J]. 日本造船学会论文集, 1974, 135: 109-120.
[3] ZARNICK E E. A nonlinear mathematical model of motions of a planing boat in regular waves[R]. David Taylor Naval Ship Research and Development Center, Bethesda Maryland, USA, 1978.
[4] MARTIN M. Theoretical determination of motions of high-speed planing boats in waves[J]. Journal of Ship Research. 1978, 22(3): 140-169.
[5] KATAYAMA T, HINAMI T, IKEDA Y. Longitudinal motion of a super high-speed planing craft in regular head waves[C]//In Proc. of the 4th Osaka Colloquium on Seakeeping Performance of Ships, Osaka, 2000: 214-220.
[6] 董文才, 刘志华, 吴晓光, 等. 滑行艇波浪中纵向运动理论预报的新方法[J]. 船舶力学, 2007, 11(1): 55-61.
[7] 戴仰山, 宋竞正, 李维扬. 快艇在海浪中的运动[J]. 哈尔滨船舶工程学院学报, 1981, 2: 51-79.
[8] 任慧龙, 戴仰山. 滑行艇在波浪中的增阻计算[J]. 中国造船, 1992, 3: 19-27.
[9] KEUNING J A. Nonlinear behaviour of fast monohulls in head waves[D]. Delft: Delft University of Technology, 1994.
[10] HICKS J D, TROESCH A W, JIANG C. Simulation and nonlinear dynamics analysis of planing hulls[J]. Journal of Offshore Mechanics and Arctic Engineering, 1993, 117(1): 38-45.
[11] GARME K. Improved time-domain simulation of planing hulls in waves by correction of the near-transom lift[J]. International Shipbuilding Progress. 2005, 52(3): 201-230.
[12] SUN H, FALTINSEN O M. Numerical study of planing vessels in waves[C]//Proceedings of the 9th International Conference on Hydrodynamics. Shanghai, 2010: 11-15.
[13] GHADIMI P, DASHTIMANESH A, MAGHREBI Y F. Initiating a mathematical model for prediction of 6-DOF motion of planing crafts in regular waves[J]. International Journal of Engineering Mathematics, 2013: 1-15.
[14] GHADIMI P, TAVAKOLI S, DASHTIMANESH A. Coupled heave and pitch motions of planing hulls at non-zero heel angle[J]. Applied Ocean Research, 2016, 59: 286-303.
[15] PENNINO S. Vertical motion assessment for planing hulls[D]. Napoli: Università degli studi di Napoli Federico II, 2014.
[16] TAVAKOLI S, GHADIMI P, DASHTIMANESH A. A nonlinear mathematical model for coupled heave, pitch, and roll motions of a high-speed planing hull[J]. Journal of Engineering Mathematics, 2017, 104: 157-194.
[17] HOSSEINZADEH S, KHORASANCHI M, SEIF M S. Investigation of planing vessels motion using nonlinear strip theory-an experimental and numerical study[J]. Ships and Offshore Structures, 2019, 14(7): 684-697.
[18] TAVAKOLI S, BILANDI R N, MANCINI S, et al. Dynamic of a planing hull in regular waves: comparison of experimental, numerical and mathematical methods[J]. Ocean Engineering, 2020, 217: 107959.
[19] BILANDI R N, TAVAKOLI S, DASHTIMANESH A. Seakeeping of double-stepped planing hulls[J]. Ocean Engineering, 2021, 236: 109475.
[20] FRIDSMA G. A systematic study of the rough-water performance of planing boats[R]. Davidson Laboratory, Stevens Institute of Technology, Castle Point Station, Hoboken, New Jersey, Report, 1275, 1969.
[21] BAHRAMI H, GHASSEMI H. Dynamic motions of the cabin mounted on the mono-hull planing boat using suspension system in waves[J]. Polish Maritime Research, 2022, 29: 13-25.