为探究船舶航行侧向来风时上层建筑对旋筒风帆空气动力性能可能产生的影响,本文运用RANS方法,对目标旋筒风帆进行数值计算,得出其在不受上层建筑干扰情况下的空气动力性能,通过与风洞模型试验数据对比,以此确定旋筒风帆数值计算策略。在上层建筑环境下,针对2种布置方案的旋筒风帆开展不同风况下的数值计算研究,并绘制旋筒风帆的空气动力系数雷达图。结果表明,在风向角为90°时,相较于无上层建筑影响的情形,3D布置方案的推力系数降低了24.93%;6D布置方案的推力系数降低了11.01%。通过对比2种布置方案下旋筒风帆的空气动力性能,得出结论,上层建筑会对旋筒风帆的空气动力性能会产生负面影响,但这种干扰会随两者之间的距离增加而减小。
To explore the possible influence of the superstructure on the aerodynamic performance of the Flettner rotor sail when there is a lateral wind during ship navigation.Firstly, this paper uses the RANS method to numerically calculate the target Flettner rotor sail in this paper, and obtains its aerodynamic performance without the interference of the superstructure. By comparing with the wind tunnel model test data, the numerical calculation strategy of the Flettner rotor sail is determined. Subsequently, in the environment of the superstructure, numerical calculation studies of the Flettner rotor sails with two layout schemes are carried out under different wind conditions, and the radar charts of the aerodynamic coefficients of the Flettner rotor sails are drawn. The research shows that when the true wind angle (TWA) = 90°, compared with the situation without the influence of the superstructure, the thrust coefficient of the 3D layout scheme decreases by 24.93%; the thrust coefficient of the 6D layout scheme decreases by 11.01%.By comparing the aerodynamic performance of the Flettner rotor sails under the two layout schemes, it is concluded that the superstructure has a negative impact on the aerodynamic performance of the Flettner rotor sail, but this interference will decrease as the distance between the two increases.
2025,47(22): 75-80 收稿日期:2025-2-28
DOI:10.3404/j.issn.1672-7649.2025.22.011
分类号:U661.33
基金项目:国家重点研发计划项目(2022YFB4300802)
作者简介:张泽瑞(1999 -), 男,研究实习员,研究方向为船舶水动力数值计算等
参考文献:
[1] 何建海, 胡以怀, 张建霞, 等. 风能在船舶上的应用现状及展望[J]. 船舶工程, 2013, 35(5): 112-115.
[2] 胡以怀, 丁梦豪, 张华武. 基于海上航线风能资源特征的船舶风帆选型[J]. 船舶工程, 2023, 45(9): 33-40.
[3] 黄兴旺. 商船艉楼式旋筒风帆数值模拟[J]. 船舶工程, 2024, 46(1): 79-85+126.
[4] 石杰, 朱元清, 冯永明, 等. Flettner转筒风帆的研究现状[J]. 能源与节能, 2022(1): 38-40+69.
[5] 何永明, 王蕾. 基于CFD模拟风帆对船舶推力系数的探究[J]. 航海, 2024(5): 47-50.
[6] LI J X, et al. Analysis of aerodynamic performance and application of flettner rotor[J]. Journal of The Institution of Engineers (India): Series C, 2024, 105(5): 1373-1383.
[7] DE MARCO A, MANCINI S, PENSA C, et al. Flettner rotor concept for marine applications: a systematic study[J]. International Journal of Rotating Machinery, 2016: 3458750.
[8] JONES L, PRINCE M, HUDSON D, et al. Predicted fuel-savings for a flettner rotor assisted tanker using computational fluid dynamics[C]//International Conference on Wind Propulsion 2019, 2019.
[9] 李振琦, 袁文鑫, 李广年, 等. Magnus 旋转式船舶节能装置特性分析[J]. 中国舰船研究, 2020, 15(S1): 87-91+140.
[10] 朱弘. 基于马格努斯效应的风力机叶片流场的数值计算[D]. 哈尔滨: 哈尔滨工业大学, 2010.
[11] 李欣, 王怡, 周熲, 等. 旋转风筒节能装置在大型远洋船上的应用[J]. 船舶工程, 2019, 41(12): 42-45+137.
[12] 韩阳, 王于, 王超, 等. Magnus效应旋转圆柱水动力性能分析[J]. 船舶力学, 2023, 27(4): 528-535.
[13] GLATZ, ANTHONY. Analyzing the kinematics of rotor sails[J/OL]. (2021)[2023-07-11]. Available online: https://www. researchgate. net/publication/348420252_Analyzing_the_Kinematics_of_Rotor_Sails.
[14] 卢俊, 钱作勤, 严新平. 转筒帆空气动力性能的数值研究[J]. 船海工程, 2010, 39(6): 135-137.