为研究自由液面对船体板架在水下接触爆炸冲击下破口损伤的具体影响,采用数值方法模拟典型加筋板在水下接触爆炸作用下的毁伤破坏,通过与文献试验结果的对比验证数值方法的有效性。在此基础上,开展水平放置加筋板和竖直放置加筋板在不同水深条件下的接触爆炸数值仿真,分析无自由液面情况下静水压力对加筋板破口尺寸的具体影响,研究自由液面对加筋板破口损伤的影响机理和影响规律。结果表明,在无自由液面情况下,加筋板架破口尺寸随着静水压力的提高逐渐增大,但总体影响较小;而自由液面对破口尺寸的影响效果非常显著,随着装药与自由液面距离的减小,爆轰气团在膨胀过程中从自由液面处大量散逸,使得作用在加筋板架上的能量显著下降,其最终的破口尺寸也显著降低。
In order to study the influence of free surface on the crevasse damage of hull plate frame subjected to underwater contact explosion, the damage of typical stiffened plates under the action of underwater contact explosion was reproduced by numerical simulation method, and the effectiveness of the numerical method was verified by comparing with the experimental results in literature. On this basis, the horizontally placed stiffened plate and numerically placed stiffened plate in different water depths under contact explosion were carried out by numerical simulation, and the specific influence of hydrostatic pressure on the crevasse size of stiffened plate without free surface was analyzed, and the influence mechanism and law of the free surface on crevasse damage of stiffened plate were studied. The results show that the crevasse size became larger with the increase of the hydrostatic pressure in the absence of free surface, but the overall effect is very limited. While the free surface can significantly affect crevasse damage of stiffened plate, a smaller distance between the charge and the free surface lead to a smaller crevasse size, because a large amount of detonation product escapes from the free surface in the process of expansion, and the energy acting on the stiffened plate frame decreases significantly.
2025,47(22): 81-88 收稿日期:2025-3-12
DOI:10.3404/j.issn.1672-7649.2025.22.012
分类号:U661.4
作者简介:金键(1990 – ),男,博士,助理研究员,研究方向为爆炸冲击动力学
参考文献:
[1] WEBSTER K G. Investigation of close proximity underwater explosion effects on a ship-like structure using the multimaterial arbitrary Lagrangian Eulerian finite element method[D]. Virginia: Virginia Polytechnic Institute and State University, 2007: 4-14.
[2] 金键, 朱锡, 侯海量, 等. 大型舰船在水下接触爆炸下的毁伤与防护研究综述[J]. 爆炸与冲击, 2020, 40(11): 15-39.
JIN J, ZHU X, HOU H L, et al. Review on the damage and protection of large naval warships subjected to underwater contact explosions[J]. Explosion and Shock Waves, 2020, 40(11): 15-39.
[3] 张振华, 朱锡. 刚塑性板在柱状炸药接触爆炸载荷作用下的花瓣开裂研究[J]. 船舶力学, 2004, 8(5): 113-119.
ZHANG Z H, ZHU X. Petaling of rigid plastic plate under contact explosive loading of cylindrical dynamite[J]. Journal of Ship Mechanics, 2004, 8(5): 113-119.
[4] 陈卫东, 王飞, 陈浩. 舰船舷侧结构水下抗爆试验和机理研究[J]. 中国造船, 2009, 50(3): 65-73.
CHEN W D, WANG F, CHEN H. Research on blast resistance mechanism of warship broadside defensive structure subjected to underwater contact explosion[J]. Shipbuilding of China, 2009, 50(3): 65-73.
[5] KEIL A H. Introduction to underwater explosion research[R]. UERD, Norfolk Naval Ship Yard, Portsmouth, Virginia, 1956.
[6] RAJENDRAN R, NARASIMHAN K. Damage prediction of clamped circular plates subjected to contact underwater explosion[J]. International Journal of Impact Engineering, 2001, 25(4): 373-386.
[7] YOSHIDA. Damage case analysis of Japanese navy ships subjected to bomb attack in the early of the second world war[J]. Ship Science, 1990(5): 70-81.
[8] 孟庆玉, 张静远. 鱼雷作战效能分析[M]. 北京: 国防工业出版社, 2003.
[9] 朱锡, 白雪飞, 黄若波, 等. 船体板架在水下接触爆炸作用下的破口试验[J]. 中国造船, 2003, 44(1): 49-55.
ZHU X, BAI X F, HUANG R B, et al. Crevasse experiment research of plate membrance in vessels subjected to underwater contact explosion[J]. Shipbuilding of China, 2003, 44(1): 49-55.
[10] 陈海龙, 周姝, 孙丰, 等. 水下接触爆炸对舰船壳板的毁伤试验效果估算方法评估[J]. 舰船科学技术, 2013, 35(10): 33-37.
CHEN H L, ZHOU S, SUN F, et al. Estimation on estimation method of warship shell experimental damage subjected to underwater contact explosion[J]. Ship science and technology, 2013, 35(10): 33-37.
[11] LS-DYNA keyword user’ manual: nonlinear dynamic analysis of structures. Version 971, vols 1 and 2. Livermore Software Technology Corporation, May 2007.
[12] 唐廷, 朱锡, 侯海量, 等. 大型水面舰艇防雷舱结构防护机理数值仿真[J]. 哈尔滨工程大学学报, 2012, 33(2): 142-149.
TANG T, ZHU X, HOU H L, et al. Numerical simulation study on the defense mechanism of a cabin near the shipboard for large surface vessels[J]. Journal of Harbin Engineering University, 2012, 33(2): 142-149.
[13] 安丰江, 施惠基, 刘琼, 等. 水下爆炸近场压力特性及其与结构的流固耦合作用[J]. 兵工学报, 2015, 36(S1): 13-24.
AN F J, SHI H J, LIU Q, et al. Load characteristics of near-field of underwater explosion and its fluid-structure interaction[J]. ACTA ARMAMENTARII, 2015, 36(S1): 13-24.
[14] 吴林杰, 侯海量, 朱锡, 等. 水下接触爆炸下防雷舱舷侧空舱的内压载荷特性仿真研究[J]. 兵工学报, 2017, 38(1): 143-150.
WU L J, HOU H L, ZHU X, et al. Numerical simulation on inside load characteristics of broadside cabin of defensive structure subjected to underwater contact explosion[J]. ACTA ARMAMENTARII, 2017, 38(1): 143-150.
[15] 陈鹏宇, 侯海量, 吴林杰, 等. 水下舷侧多层防护隔舱接触爆炸毁伤载荷特性分析[J]. 爆炸与冲击, 2017, 37(2): 283-290.
CHEN P Y, HOU H L, WU L J, et al. Analysis of the damage load of the underwater contact explosion on multi-layered defend cabins[J]. Explosion and Shock waves, 2017, 37(2): 283-290.
[16] COLE R H. Underwater Explosion[M]. Princeton: Princeton University Press, 1948.
[17] WILKERSON S A. A boundary integral approach for three-dimensional underwater explosion bubble dynamics[D]. Baltimore: Johns Hopkins University, 1990.
[18] BLAKE J R, GIBSON D C. Growth and collapse of a vapour cavity near a free surface[J]. Journal of Fluid Mechanics, 1981, 111: 123-140.
[19] 张阿漫. 水下爆炸气泡三维动态特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2006.