在无人艇路径规划算法中,针对传统蚁群算法收敛速度慢、路径拐点多以及传统动态窗口算法不能适应复杂避碰环境等问题,本文提出一种融合改进蚁群和动态窗口法的无人艇避障路径规划算法。首先,通过优化启发函数并改进初始信息素浓度来提高算法的收敛速度;其次,将转向角参数θ引入状态转移概率公式、改进状态转移规则并对路径进行优化处理,提高了路径的平滑性且减少了冗余点;进一步引入模糊控制的方法来改进动态窗口法的轨迹评价函数;从而实现无人艇全局路径优化并有效进行局部动态避碰。最后通过Matlab进行仿真实验。仿真结果表明,算法迭代次数缩小了38.1%、拐点数量减少了72.7%、路程缩短1%左右,未知及动态障碍物的避碰效果有明显提升。
In the path planning algorithm for unmanned surface vessels (USVs), aiming at the problems of slow convergence speed, excessive path turning points in the traditional ant colony algorithm, and the inability of the traditional dynamic window algorithm to adapt to complex collision avoidance environments, this paper proposes a USV obstacle avoidance path planning algorithm that integrates an improved ant colony algorithm and dynamic window method. Firstly, the convergence speed of the algorithm is enhanced by optimizing the heuristic function and improving the initial pheromone concentration. Secondly, the turning angle parameter θ is introduced into the state transition probability formula, the state transition rule is improved, and the path is optimized to enhance the smoothness of the path and reduce redundant points. Further, the fuzzy control method is introduced to improve the trajectory evaluation function of the dynamic window method. Thus, the global path of the USV is optimized and local dynamic collision avoidance is effectively carried out. Finally, simulation experiments are conducted using Matlab. The simulation results show that the number of algorithm iterations is reduced by 38.1%, the number of turning points is reduced by 72.7%, the distance is shortened by about 1%, and the collision avoidance effect for unknown and dynamic obstacles is significantly improved.
2025,47(22): 102-110 收稿日期:2025-2-26
DOI:10.3404/j.issn.1672-7649.2025.22.015
分类号:U692.3+1
基金项目:国家自然科学基金面上项目(52178067)
作者简介:段修洋(2001 – ),男,硕士研究生,研究方向为船舶避碰
参考文献:
[1] 赵亮, 王芳, 白勇. 水面无人艇路径规划的现状与挑战[J]. 船舶工程, 2022, 44(4): 1-7+48.
ZHAO L, WANG F, BAI Y. Current status and challenges of unmanned surface vehicle path planning[J]. Ship Engineering, 2022, 44(4): 1-7+48.
[2] 周治国, 邸顺帆. 基于Citespace的水面无人艇路径规划与避障算法研究[J]. 舰船科学技术, 2023, 45(16): 59-63.
ZHOU Z G, DI S F. Research and analysis of path planning and obstacle avoidance algorithms for unmanned surface vehicles based on citespace[J]. Ship Science and Technology, 2023, 45(16): 59-63.
[3] 沈克宇, 游志宇, 刘永鑫. 基于拟合优先搜索的多场景自适应改进A*算法[J]. 计算机工程与科学, 2024, 46(1): 142-149.
SHEN K Y, YOU Z Y, LIU Y X. A multi-scene adaptive A* algorithm based on fitting-first search[J]. Computer Engineering & Science, 2024, 46(1): 142-149.
[4] 栾志玲. 改进遗传算法的船舶航行路径规划方法[J]. 舰船科学技术, 2019, 41(10): 31-33.
LUAN Z L. Ship navigation path planning based on improved genetic algorithms[J]. Ship Science and Technology, 2019, 41(10): 31-33.
[5] MIAO C W, CHEN G Z, YAN C L, et al. Path planning optimization of indoor mobile robot based on adaptive ant colonyalgorithm[J]. Computers & Industrial Engineering, 2021, 156: 107230.
[6] 方煜. 粒子群优化算法在舰船路径优化仿真中的应用[J]. 舰船科学技术, 2023, 45(16): 161-164.
FANG Y. Application of particle swarm optimization algorithm in ship path optimization simulation[J]. Ship Science and Technology, 2023, 45(16): 161-164.
[7] SANG H, YOU Y, SUN X, et al. The hybrid path planning algorithm based on improved A*and artificial potential field for unmanned surface vehicle formations[J]. Ocean Engineering, 2021, 223(3-4): 108709-108724.
[8] ZHANG J H, FENG Q, ZHAO A D, et al. Local path planning of mobile robot based on self-adaptive dynamic window approach[J]. Journal of Physics: Conference Series, 2021(1): 45-52.
[9] 乔珍, 尹传忠, 仇鑫. 基于改进蚁群算法的长航程无人船路径规划[J]. 计算机工程与科学, 2024, 46(10): 1835-1842.
QIAO Z, YIN C Z, QIU X. Path planning of long-range unmanned ship based on improved ant colony algorithm[J]. Computer Engineering & Science, 2024, 46(10): 1835-1842.
[10] 王敏, 石明航, 韩晔昕, 等. 基于改进蚁群算法的无人艇全局航路规划模型[J]. 河南科技大学学报(自然科学版), 2024, 45(5): 50-56+118.
WANG M, SHI M H, HAN Y X, et al. Global route planning for unmanned vehicles based on improved ant colony algorithm[J]. Journal of Henan University of Science and Technology(Natural Science), 2024, 45(5): 50-56+118.
[11] 王倩, 李俊丽, 杨立炜, 等. 改进蚁群融合DWA算法的移动机器人路径规划[J]. 兵工自动化, 2023, 42(4): 79-84.
WANG Q, LI J L, YANG L W, et al. Mobile robot path planning based on improved ant colony and DWA algorithm[J]. Ordnance Industry Automation, 2023, 42(4): 79-84.
[12] 陈奕虎. 面向动态环境的室内移动机器人路径规划研究[D]. 桂林: 广西师范大学, 2023.
[13] 白响恩, 江明哲, 徐笑锋, 等. 基于双向搜索的改进蚁群算法的船舶路径规划[J]. 中国航海, 2022, 45(3): 13-20.
BAI X E, JIANG M Z, XU X F, et al. Ship route planning using improved ant colony algorithm with bi-directional search strategy[J]. Navigation of China, 2022, 45(3): 13-20.
[14] 张金泽, 赵红, 王宁, 等. 密集障碍物下无人艇模糊双窗口DWA避障算法[J]. 中国舰船研究, 2021, 16(6): 10-18.
ZHANG J Z, ZHAO H, WANG N, et al. Fuzzy dual-window DWA algorithm for USV in dense obstacle conditions[J]. Chinese Journal of Ship Research, 2021, 16(6): 10-18.
[15] 魏阁安, 张建强. 基于改进动态窗口法的无人艇编队集结研究[J]. 舰船科学技术, 2023, 45(23): 91-95+99.
WEI G A, ZHANG J Q. Research on USV formation aggregation based on improved DWA algorithm[J]. Ship Science and Technology, 2023, 45(23): 91-95+99.
[16] YANG W L, WU P, ZHOU X Q, et al. Improved artificial potential field and dynamic window method for amphibious robot fish path planning[J]. Applied Sciences, 2021, 11(5): 2114.
[17] HYOGON KIM, SUNG JO YUN, YOUNG HO CHOI, et al. Improved dynamic window approach with ellipse equations for autonomous navigation of unmanned surface vehicle[J]. Journal of Institute of Control Robotics and Systems, 2020, 26(8): 624-629.