本文针对传统模型预测控制的燃料电池船舶能量管理策略,存在预测区间内负载功率信息缺失,导致等效氢耗增加的问题,提出基于随机模型预测控制的能量管理策略。依托收集的船速数据构建马尔可夫链精准预测船速以实现负载功率预测,提出以等效氢耗最小化、锂电池荷电状态维持合理区间、燃料电池效率最大化为多目标函数的随机模型预测控制策略,将其与有限状态机策略、传统模型预测控制策略对比,并深入分析不同权重参数组合下的优化效果。仿真结果表明,与传统模型预测控制策略相比,等效氢耗减少了1.7%,燃料电池工作在高效率区间的时间更长,锂电池荷电状态与参考值误差为1.32%,并进行硬件在环实验验证。本文提出的随机模型预测控制策略,显著提升系统能效与动态适应性,为绿色航运与“双碳”战略深度融合提供创新实践支撑。
Aiming at the issue of missing load power information within the prediction horizon in traditional model predictive control-based energy management strategies for fuel cell ships, which leads to increased equivalent hydrogen consumption, this paper proposes an energy management strategy based on stochastic model predictive control. Leveraging collected ship speed data to construct a Markov chain for accurate ship speed prediction and load power forecasting, this study proposes a stochastic model predictive control strategy with multi-objective functions: minimizing equivalent hydrogen consumption, maintaining the lithium battery state of charge (SOC) within a reasonable range, and maximizing fuel cell efficiency. The proposed strategy is compared with finite state machine strategies and traditional model predictive control strategies, while an in-depth analysis is conducted to evaluate optimization effects under different combinations of weighting parameters. The simulation results indicate that, compared to the model predictive control strategy, the equivalent hydrogen consumption is reduced by 1.7%, the fuel cell operates in the high-efficiency range for a longer duration, and the lithium battery SOC exhibits a 1.32% error relative to the reference value, and hardware-in-the-loop experimental verification. The stochastic model predictive control (SMPC) strategy proposed in this study significantly enhances system energy efficiency and dynamic adaptability, offering innovative practical support for the deep integration of green shipping and the "dual-carbon" strategic goals.
2025,47(22): 111-119 收稿日期:2025-2-12
DOI:10.3404/j.issn.1672-7649.2025.22.016
分类号:U674.925
基金项目:国家重点研发计划项目(2023YFB4301704);国家自然科学基金面上项目(51979021)
作者简介:刘彦呈(1963 – ),男,博士,教授,研究方向为电机驱动控制、微电网技术、水中航行器智能控制
参考文献:
[1] PALMER K, TATE JE, WADUD Z, et al. Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan[J]. Appl Energy 2018, 209: 108–19.
[2] 童亮, 袁裕鹏, 李骁, 等. 我国氢动力船舶创新发展研究[J]. 中国工程科学, 2022, 24(3): 127-139.
TONG L, YUAN Y P, LI X, et al. Innovative developmental of hydrogen-powered ships in china[J]. Strategic Study of CAE, 2022, 24(3): 127-139.
[3] FAN A, WANG J, HE Y, et al. Decarbonising inland ship power system: alternative solution and assessment method[J]. Energy, 2021, 226: 120266.
[4] WANG X, ZHU J, HAN M. Industrial development status and prospects of the marine fuel cell: a review[J]. Journal of Marine Science and Engineering, 2023, 11(2): 238.
[5] CHARPENTIER J F, HAN J G, TANG T H. An energy management system of a fuel cell/battery hybrid boat[J]. Energies, 2014, 7(5): 2799-2820.
[6] 杨再明, 高海波, 林治国, 等. 多电船舶的能量管理策略仿真研究[J]. 中国修船, 2019, 2(3): 42-46.
YANG Z M, GAO H B, LIN Z G, et al. Simulation study on energy management strategies for multi-electric ships[J]. China Shiprepair, 2019, 2(3): 42-46.
[7] 闫立, 孙俊, 王星. 基于小波包-模糊控制的燃料电池混合动力船舶能量控制策略[J]. 舰船科学技术, 2023, 45(19): 130-136.
YAN L, SUN J, WANG X. Energy control strategy for fuel cell hybrid ship based on wavelet packet - fuzzy control[J]. Ship Science and Technology, 2023, 45(19): 130-136.
[8] 罗辑, 李维波, 张忠田, 等. 基于粒子群优化阈值的多堆燃料电池系统功率分配策略研究[J]. 中国舰船研究, 2023, 18(5): 224-233.
LUO J, LI W B, ZHANG Z T, et al. Research on power distribution strategy of multi-stack fuel cell system based on particle swarm optimization threshold[J]. Chinese Journal of Ship Research, 2023, 18(5): 224-233.
[9] 潘钊, 商蕾, 高海波, 等. 燃料电池混合动力船舶复合储能系统与能量管理策略优化[J]. 大连海事大学学报, 2021, 47(3): 79-85.
PAN Z, SHANG L, GAO H B, et al. Optimization of composite energy storage system and energy management strategy for fuel cell hybrid ships[J]. Journal of Dalian Maritime University, 2021, 47(3): 79-85.
[10] 李致朋, 肖仪卓, 刘宣佑, 等. 绿色船舶燃料电池混动系统能量管理策略研究[J]. 舰船科学技术, 2025, 47(2): 120-126.
LI Z P, XIAO Y Z, LIU X Y, et al. Analysis of energy management strategies for marine fuel cell hybrid systems[J]. Ship Science and Technology, 2025, 47(2): 120-126.
[11] WU P, BUCKNALL R. Hybrid fuel cell and battery propulsion system modelling and multi-objective optimisation for a coastal ferry[J]. International Journal of Hydrogen Energy, 2020, 45(4): 3193-3208.
[12] 孟翔, 李奇, 陈维荣, 等. 基于庞特里亚金极小值原理满意优化的燃料电池混合动力系统分层能量管理方法[J]. 中国电机工程学报, 2019, 39(3): 782-792.
MENG X, LI Q, CHEN W R, et al. An energy management method based on pontryagin minimum principle satisfactory optimization for fuel cell hybrid systems[J]. Proceedings of the CSEE, 2019, 39(3): 782-792.
[13] 王宁, 宋炳松, 高田宇. 考虑寿命衰减的燃料电池船舶自适应等效氢耗最小策略[J/OL]. 中国舰船研究, 1-11[2025-04-07].
WANG N, SONG B S, GAO T Y. Adaptive equivalent consumption minimization strategy for ship fuel cells suffering from life decay[J/OL]. Chinese Journal of Ship Research, 1-11[2025-04-07].
[14] 赵凡非, 李煜辉, 周梦妮, 等. 船舶多堆燃料电池混合动力系统能量管理策略优化[J]. 舰船科学技术, 2024, 46(14): 134-140.
ZHANG F F, LI Y H, ZHOU M N, et al. Optimization of energy management strategy for marine multi-stack fuel cell hybrid power system[J]. Ship Science and Technology, 2024, 46(14): 134-140.
[15] ZHU L, LIU Y C, ZENG Y J, et al. Energy management strategy for fuel cell hybrid ships based on deep reinforcement learning with multi-optimization objectives[J]. International Journal of Hydrogen Energy, 2024, 93: 1258-1267.
[16] SUN C, SUN F, HE H. Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles[J]. Appl Energy, 2017, 185: 1644-53.
[17] SHEN P, ZHAO Z, ZHAN X, et al. Optimal energy management strategy for a plug-in hybrid electric commercial vehicle based on velocity prediction[J]. Energy, 2018, 155: 838-52.
[18] 周寅正, 陈俐. 基于模型预测控制的双机组混合动力船舶能量管理研究[J]. 中国舰船研究, 2024, 19(增刊 1): 74-83.
ZHOU Y Z, CHEN L. Study on energy management of dual-diesel generator sets hybrid power ships based on model predictive control[J]. Chinese Journal of Ship Research, 2024, 19(Supp 1): 74–83 .
[19] VAFAMAND N, BOUDJADAR J, KHOOBAN M H. Model predictive energy management in hybrid ferry grids[C]//6th International Conference on Power and Energy Systems Engineering. 2019.
[20] MA Y, LI C, WANG S Y. Multi-objective predictive energy management strategy for fuel cell hybrid electric vehicle based on velocity forecast and driving pattern recognition[J]. ISA Transactions, 2022, 131: 178-196.
[21] MOHSEN B, JALIL B, MOHAMMAD-HASSAN K. Stochastic model predictive energy management in hybrid emission-free modern maritime vessels[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5430-5440.
[22] HU X, ZOU C, TANG X, et al. Cost-optimal energy management of hybrid electric vehicles using fuel cell/battery health-aware predictive control[J]. IEEE Transactions on Power Electronics, 2019, 35(1): 382-392.
[23] GHAEMI R, SUN J, KOLMANOVSKY I V. An integrated perturbation analysis and sequential quadratic programming approach for model predictive control[J]. Automatica, 2009, 45(10): 2412-2418.