随着气泡润滑技术在运输型船舶应用的兴起,螺旋桨与气泡流的相互作用愈发引起重视。在求解雷诺平均方程与体积分数方程的基础上,结合滑移网格技术建立了螺旋桨在水气掺混流体中的数值方法,对KP505桨绕流数值模型进行了不确定度分析,计算桨的敞水性能受通气位置和通气量的影响,建立的线性模型可准确描述螺旋桨在轴线处通气的敞水性能与通气量的关系;利用性能曲面模型描述不同通气量时,通气位置向叶梢移动对敞水性能的影响。
With the rise of bubble lubrication technology in transport ships, the interaction between propellers and bubble flow has become increasingly important. On the basis of solving the Reynolds averaged equation and the volume fraction equation, a numerical model of the propeller in a water air mixed fluid was established using the sliding mesh technique. uncertainty analysis was conducted on the KP505 propeller flow numerical model, and the open water performance of the propeller was calculated to be affected by the injection position and injection volume. A linear model was established to describe the relationship between the open water performance of the propeller at the axis and the injection rate. The performance surface model was used to describe the effect of the air injection position moving towards the wing tip on open water performance at different air injection rates.
2025,47(22): 120-126 收稿日期:2024-12-9
DOI:10.3404/j.issn.1672-7649.2025.22.017
分类号:U661.1
基金项目:国家自然科学基金资助项目(51709133);江苏省研究生科研与实践创新计划资助课题(SJCX23_1821)
作者简介:王志博(1983 – ),男,副研究员,研究方向为船舶水动力学
参考文献:
[1] ZHU W, LI Z, DING R. Effect of pitch ratio on the cavitation of controllable pitch propeller[J]. Ocean Engineering, 2024, 293: 116692.
[2] SINAGA N, DHANDE D Y, YUNIANTO B. A numerical investigation of the effect of blade number on the performance of an INSEAN E779A marine propeller in a cavitating flow using computational fluid dynamics[J]. Ocean Engineering, 2022, 261: 112063.
[3] RIZK A M , BELHENNICHE E S , IMINE O , et al. CFD prediction of E779A propeller cavitation and its hydrodynamic performance behind a general hull based on RANSE model[J]. Journal of Marine Science and Application, 2023, 22(2): 273-283.
[4] CAPONE A, Alves P F, Di F F. Flow and cavity measurements in a super-cavitating propeller[J]. Journal of Marine Science and Engineering, 2024, 12(2): 243.
[5] YOUNG Y L, KINNAS S A. Analysis of supercavitating and surface-piercing propeller flows via BEM[J]. Computational Mechanics, 2003, 32(4): 269-280.
[6] YOUNG Y L, SAVANDER B R. Numerical analysis of large-scale surface-piercing propellers[J]. Ocean Engineering, 2011, 38(13): 1368-1381.
[7] ARNDT R E A, KARN A, HONG J. Gas entrainment behaviors in the formation and collapse of a ventilated supercavity[J]. Experimental Thermal and Fluid Science, 2016, 79: 294-300.
[8] 袁煜明, 王超, 任振. 通气管直径对半浸式螺旋桨水动力影响[J]. 哈尔滨工程大学学报, 2019, 40(2): 227-233.
[9] 钱正芳, 张纬康, 马骋, 等. 半浸桨水动力性能预报方法研究[J]. 中国造船, 2018, 59(4): 51-59.
[10] SUN T, XIE Q, HUANG H, et al. Numerical investigation of ventilated cavity dynamics over a submerged body in the wake of a propeller[J]. Ocean Engineering, 2022, 257: 111580.
[11] 吴浩, 欧勇鹏. 肥大型气泡船底部凹槽构型设计及优化[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(5): 963-967.
[12] LEE J-H, PARK H-G, KIM J-H, et al. Reduction of propeller cavitation induced hull exciting pressure by a reflected wave from air-bubble layer[J]. Ocean Engineering, 2014, 77: 23-32.
[13] WANG H, WANG K, LIU G. Drag reduction by gas lubrication with bubbles[J]. Ocean Engineering, 2022, 258: 111833.
[14] GAO Q, LU J, ZHANG G, et al. Experimental study on bubble drag reduction by the turbulence suppression in bubble flow[J]. Ocean Engineering, 2023, 272: 113804.
[15] PARK H J, HAMADA T, KAWAKITA C, et al. Vertical diffusion of bubbles injected beneath a flat-bottomed ship for frictional drag reduction[J]. Ocean Engineering, 2023, 289: 116248.
[16] FUJISAWA J U, KUME Y K. Local velocity field measurements around the KCS Model (SRI MS No. 631) in the SRI 400m towing tank[R]. Ship Performance Division Report, 2000.
[17] ITTC QM Procedure 7.5-03-01-01[S]. 2002.
[18] JIAN W, PETKOVSEK M, HOULIN M, et al. Combined numerical and experimental investigation of the cavitation erosion process[J]. Fluid Engineering, 2015, 13(7):13-15.
[19] KÖKSAL Ç S, USTA O, AKTAS B, et al. Numerical prediction of cavitation erosion to investigate the effect of wake on marine propellers[J]. Ocean Engineering, 2021, 239: 109820.
[20] YUSVIKA M, PRABOWO A R, BAEK S J, et al. Achievements in observation and prediction of cavitation: Effect and damage on the ship propellers[J]. Procedia Structural Integrity, 2020, 27: 109-116.