本文在MMG模型基础上结合实船试验获得的水动力参数和喷水推进泵的工作特性,建立了喷水推进船艇的三自由度运动数学模型。将状态变量和滑模面积分融入趋近律中最终得到航向控制律,通过改进设计使得滑模面的切换过程更加平滑,提高了算法的控制精度。构造Lyapunov函数证明了所设计的控制器是渐进稳定的。超扭曲滑模控制算法控制器输出的期望角度较传统PID控制算法在航行过程中振荡较小,对期望角度的跟踪效果更好。艏向角到达期望值以后,滑模面趋近于0,具有较高的稳定性与快速性。
Based on the MMG model and combined with the hydrodynamic parameters obtained from real ship experiments and the working characteristics of the water jet propulsion pump,this article establishes a three degree of freedom motion mathematical model for water jet propulsion watercraft.The state variables and sliding mode area are integrated into the approaching law to obtain the heading control law.By improving the design,the switching process of the sliding mode surface is smoother,which improves the control accuracy of the algorithm.The construction of Lyapunov function proves that the designed controller is asymptotically stable.The desired angle output of the controller using the super twisted sliding mode control algorithm oscillates less during navigation compared to the traditional PID control algorithm,resulting in better tracking performance for the desired angle.After the bow angle reaches the expected value,the sliding surface approaches zero,exhibiting high stability and speed.
2025,47(22): 127-132 收稿日期:2024-11-8
DOI:10.3404/j.issn.1672-7649.2025.22.018
分类号:U664.82
作者简介:马庆严(1995 – ),男,硕士,工程师,研究方向为喷水推进船机电控制
参考文献:
[1] AMERONGEN J V, LEMKE H R V N. Recent developments in automatic steering of ships[J]. Journal of Navigation, 1986, 39(3): 349-362.
[2] WITT N A, MILLER K M. A neural network autopilot for ship comtrol[J]. Automatic Pilot, 1993.
[3] SUTTON R. Neuro-Fuzzy techniques applied to a ship autopilot design[J]. Journal of Navigation, 1996, 49(3): 410-430.
[4] 杨盐生. 船舶航向非线性系统的模型参考模糊自适应控制[J]. 中国造船, 2003, 44(3): 85-93.
[5] 杨盐生. 不确定系统的鲁棒控制及其应用[M]. 北京: 科学出版社, 2004.
[6] 杨盐生, 贾欣乐. 船舶航向的变结构控制自动舵设计[J]. 大连海事大学学报, 1998(1): 13-17.
[7] PETTERSEN K Y, NIJMEIJER H. Global practical stabilization and tracking for an underactuated ship - A combined averaging and backstepping approach[J]. Modeling Identification & Control, 1999, 20(4): 59-64.
[8] PETTERSEN K Y, NIJMEIJER H. Semi-global practical stabilization and disturbance adaptation for an underactuated ship[C]//Decision and Control, 2000. Proceedings of the 39th IEEE Conference on. IEEE, 2000.
[9] 高双. 喷水推进船舶的航向/航速控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2008.
[10] 曾薄文. 喷水推进水面无人艇的非线性控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
[11] 廖煜雷. 无人艇的非线性运动控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
[12] LORIA A, FOSSEN T I, PANTELEY E. A separation principle for dynamic positioning of ships: theoretical and experimental results[J]. IEEE Transactions on Control Systems Technology, 2000, 8(2): 332-343.
[13] XINPING B, NONAMI K, YU Z. Combined yaw and roll control of an autonomous boat[C]//IEEE International Conference on Robotics and Automation. IEEE, 2009.
[14] JIANG Z P. Global tracking control of underactuated ships by Lyapunov's direct method[J]. Automatica, 2002, 38(2): 301-309.
[15] DO K D, JIANG Z P, PAN J. Robust adaptive path following of underactuated ships[J]. Automatica, 2004, 40(6): 929-944.
[16] DO K D. Global robust adaptive path-tracking control of underactuated ships under stochastic disturbances[J]. Ocean Engineering, 2016, 111: 267-278.
[17] 段海庆, 朱齐丹. 基于反步自适应神经网络的船舶航迹控制[J]. 智能系统学报, 2012, 7(3): 259-264.
[18] 王晓飞. 基于解析模型预测控制的欠驱动船舶路径跟踪控制研究[D]. 上海: 上海交通大学, 2009.
[19] CHABOT, JEAN F, PEREZ D, ALEXIS, et al. Alignment control for a water-jet cutting system. 欧洲专利: EP1964646, 2011-07-06.
[20] ELGER G. Waterjet propulsion unit for water craft with control elements for changing the direction of thrust of the waterjet. 美国专利: US5649843, 1997-07-22.
[21] ROLLA, PHILIP. Waterjet propulsion system and method for a marine vehicle. 欧洲专利: EP2729358, 2014-05-14.
[22] 黄博伦, 杨启. 基于super_twisting二阶滑模算法的作业型ROV路径跟踪控制方法[J]. 水下无人系统学报, 2021, 29(1): 14-22.