针对船舶螺旋桨在远场产生的低频线谱辐射噪声难题,本文提出了一种创新的自适应控制策略,该策略聚焦于近场法向声能流作为控制依据。通过智能有源控制系统动态调整次级声源,有效遏制了结构法向声能的传播,从而实现了对远场低频辐射噪声的精准控制。基于螺旋桨辐射噪声的仿真数据,构建了相应的主动控制仿真模型。实验结果显示,在20~100 Hz低频范围内,相较于传统基于近场声压的控制方法,新方法在维持总辐射声功率稳定的同时,显著增强了远场特定区域的噪声抑制效果,降噪面积提升幅度介于11.34%~15.18%,且低频段降噪效果尤为显著,降噪区域随频率降低而扩大。
Addressing the challenge of low-frequency line-spectrum radiation noise generated by ship propellers in the far field, this paper presents an innovative adaptive control strategy that focuses on near-field normal acoustic energy flux as the basis for control. By dynamically adjusting the secondary sound source through an intelligent active control system, the propagation of structural normal acoustic energy is effectively suppressed, thereby achieving precise control over the low-frequency radiation noise in the far field. Based on simulation data of propeller radiation noise, a corresponding active control simulation model is constructed. Experimental results show that within the low-frequency range of 20 to 100 Hz, compared to traditional control methods based on near-field sound pressure, the new method significantly enhances noise suppression in specific regions of the far field while maintaining stable total radiated sound power. The noise reduction area increases by 11.34% to 15.18%, with particularly pronounced noise reduction effects at lower frequencies, where the noise reduction area expands as the frequency decreases.
2025,47(22): 133-139 收稿日期:2025-2-28
DOI:10.3404/j.issn.1672-7649.2025.22.019
分类号:U661.44
基金项目:国家自然科学基金青年基金项目(52401369);水声技术全国重点实验室基金资助项目(2023JCJQLB07206)
作者简介:袁佳伟(2000–),男,硕士研究生,研究方向为结构振动与噪声主动控制
参考文献:
[1] 何祚镛. 水下噪声及其控制技术进展和展望[J]. 应用声学, 2002(1): 26-34.
HE Z Y. Review of some aspects of underwater noise including its control techniques and Its prospect[J]. Applied Acoustics, 2002(1): 26-34.
[2] 徐野, 熊鹰, 黄政. 船舶无空泡螺旋桨诱导噪声研究现状综述[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(5): 860-871.
XU Y, XIONG Y, HUANG Z. Review of research on induced noise of ship non-cavitation propeller[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2019, 43(5): 860-871.
[3] 陈克安. 有源噪声控制技术及其在舰船中的应用[J]. 中国舰船研究, 2017, 12(4): 17-21+34.
CHEN K A. Active noise control technology and its application in ships[J]. China Shipbuilding Research, 2017, 12(4): 17-21+34.
[4] MERZ S, KESSISSOGLOU N, KINNS R, et al. Passive and active control of the radiated sound power from a submarine excited by propeller forces[J]. Journal of Ship Research, 2013, 57(1): 59-71.
[5] KUSNI M. The active noise control of propeller noise using a multipole secondary source[J]. ICAS 2002.
[6] LI S, YANG D, ZHANG H. Experimental study of underwater propeller low-frequency noise flied[C]//2016 IEEE/OES China Ocean Acoustics (COA). IEEE, 2016: 1-4.
[7] 郑援, 胡成军, 赵汉波. 船舶航行辐射噪声的主动控制方法研究[J]. 信号处理, 2013, 29(9): 1200-1205.
ZHENG Y, HU C J, ZHAO H B. On the active control of vessel navigation noises[J]. Signal Processing, 2013, 29(9): 1200-1205.
[8] 伭炜, 徐新盛, 黄晓萍. 一种水下有源噪声抵消系统的设计[J]. 压电与声光, 2008(5): 544-546.
ZHU W, XU X S, HUANG X P. Design of underwater acoustic active noise cancellation system[J]. Piezoelectric and Acousto Optical, 2008(5): 544-546.
[9] 穆青. 水下螺旋桨低频辐射噪声的有源控制方法理论研究[D]. 哈尔滨: 哈尔滨工程大学, 2023.
[10] 胡鹏涛, 肖庆华, 杨博, 等. 舰船噪声频带级限值线模型的分析与评价[J]. 舰船科学技术, 2025, 47(2): 145-151.
HU P T, XIAO Q H, YANG B, et al. Analysis and evaluation of the frequency band level limit line model for ship noise[J]. Ship Science and Technology, 2025, 47(2): 145-151.
[11] 杨德森, 王文博, 时洁, 等. 有限潜深圆柱壳低频矢量声场特性分析[J]. 哈尔滨工程大学学报, 2020, 41(2): 166-174.
YANG D S, WANG W B, SHI J, et al. Low-frequency vector sound field characteristic analysis of a cylindrical shell with finite submerged depth[J]. Journal of Harbin Engineering University, 2020, 41(2): 166-174.
[12] 张旭阳, 基于法向能流的水下结构辐射噪声主动控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[13] 李文煜. 基于法向能流的水下低频噪声自适应控制方法[D]. 哈尔滨: 哈尔滨工程大学, 2022.
[14] 李占国. 近水面情况下弹性结构低频辐射声场自适应调控方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2023.
[15] 张雪松, 商德江, 肖妍. 利用近场法向声能流调控远场低频线谱噪声的自适应控制方法[J]. 声学学报, 2024, 49(1): 89-103.
ZHANG X S, SHANG D J, XIAO Y. Adaptive control method for low-frequency line spectrum noise based on normal intensity[J]. Journal of Acoustics, 2024, 49 (1): 89-103.