为研究螺旋桨冰区推进性能与桨数的影响,本文通过NAPA软件将一艘极地单桨船进行型线修正并改为多桨船。基于STAR-CCM+软件,采用CFD-DEM耦合模型开展船舶自航数值模拟,研究冰区环境下船舶推进性能与敞水域的差异,同时分析单桨、双桨和三桨情况下船舶推进性能变化。结果显示相比敞水域,冰区环境下船舶推力减额从0.1003增加至0.1212,所需推力增加了2.43%,所需功率增加了9.13%,其推进效率从30.22%下降至27.68%;随着桨数的增加所需推力和功率增加,但推进效率下降,其中单桨、双桨、三桨船推进效率分别为27.68%、 25.5%和22.2%;桨数配置对极地船舶主机功率影响数值结果趋势与CCS《重型破冰船规范 2024》规范参考值基本一致。
To investigate the effects of propeller configuration on ice-going propulsion performance, the hull form of a polar single-propeller vessel is modified and converted into a multi-propeller configuration using NAPA software in this study. Based on the STAR-CCM+ software and using the CFD-DEM coupled model,numerical simulations of self-propulsion are conducted to study the propulsive performance difference between polar and open-water environment. Additionally, propulsive performance for single,twin,and triple propeller configurations are analyzed.The result shows that compared to the open-water environment, the Vessel's thrust reduction in the polar environment increased from 0.1003 to 0.1212, the required thrust increased by 2.43%,the required power increased by 9.13%, and the propulsion efficiency decreased from 30.22% to 27.68%. As the number of propellers increased, both the required thrust and power increased, while propulsion efficiency decreased. Specifically, the propulsion efficiencies for single,twin and triple propeller configurations were 27.71%, 25.5% and 22.2%. The effect of propeller configuration on the main engine power of polar vessels is in good agreement with the CCS Heavy Icebreaker Specification 2024.
2025,47(22): 140-147 收稿日期:2025-2-20
DOI:10.3404/j.issn.1672-7649.2025.22.020
分类号:U644.33
基金项目:国家自然科学基金面上项目(52171259);工信部高技术船舶科研项目([2021]342号)
作者简介:张宇(2000 – ),男,硕士研究生,研究方向为船舶推进性能
参考文献:
[1] Finnish&Swedish Maritime Administration. FinnishSwedish Ice Class Rules[S]. 2010.
[2] ABS. Rules for building and classing steel vseels, parts6[S]. 2018.
[3] 中国船级社. 重型破冰船规范[S]. 2024.
[4] 王兴权, 陈秋芝, 王德恂. 三桨船船模自航试验的数据处理分析[J]. 武汉造船, 1998, 6, 28-31.
WANG X Q, CHEN Q Z, WANG D X. Data processing and analysis of self-propulsion tests for a three-propeller ship model[J]. Wuhan Shipbuilding, 1998, 6, 28-31.
[5] 孙程程. 重型破冰船多桨状态对敞水性能的影响分析[J]. 新技术新工艺, 2024(7): 63-68.
SUN C C. Analysis of the influence of multi-propeller configurations on open water performance of heavy icebreakers[J]. New Technology New Process, 2024(7): 63-68.
[6] 朱成华, 齐江辉, 郭健, 等. 不同螺旋桨配置对重型破冰船推力的影响分析[J]. 哈尔滨工程大学学报, 2022, 43(1): 69-75.
ZHU C H, QI J H, GUO J, et al. Analysis of the influence of different propeller configurations on the thrust of heavy icebreakers[J]. Journal of Harbin Engineering University, 2022, 43(1): 69-75.
[7] 夏久林. 多桨船舶螺旋桨物理动力特性仿真[J]. 舰船科学技术, 2019, 41(8): 10-12.
XIA J L. Simulation of physical dynamic characteristics of propellers for multi-propeller ships[J]. Ship Science and Technology, 2019, 41(8): 10-12.
[8] TADROS M, VENTURA M, GUEDES S C. Fuel Consumption analysis of single and twin-propeller propulsion systems of a bulk carrier[J]. Journal of Marine Science and Application, 2023, 22: 741-750
[9] WILKMAN, GÖRAN, RANKI, et al· On full-scale onboard ship measurements in various ice conditions, a review of existing database at aker arctic technology[C]// The Twenty-second International Offshore and Polar Engineering Conference, Rhodes, Greece, June 2012.
[10] XIE C, ZHOU L, WU T C, et al. Resistance performance of a vessel in model-scaled brash ice fields using CFD and DEM coupling model [J]. Frontiers in Energy Research, 2022, 10: 895948.
[11] 郑思洁, 周利, 刁峰, 等. 空泡下双向冰级桨水动力性能试验研究[J]. 船舶力学, 2024, 28(1): 70-80.
ZHENG S J, ZHOU L, DIAO F, et al. Experimental study on hydrodynamic performance of bidirectional ice-class propellers under cavitation conditions[J]. Journal of Ship Mechanics, 2024, 28(1): 70-80.
[12] 沈中祥, 郑思洁, 刘仁伟. 冰阻塞对螺旋桨推力性能影响数值分析[J]. 江苏科技大学学报(自然科学版), 2023, 37(2): 14-19.
SHEN Z X, ZHENG S J, LIU R W. Numerical analysis of the effect of ice blockage on propeller thrust performance[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2023, 37(2): 14-19.
[13] LEIVISKÄ T. The Propulsion of an Ice Going Vessel Ahead and Asternc[C]//Proceedings of the 17th International Conference on Port and Ocean Engineering under Arctic Conditions POAC'03 Trondheim, Norway, June 16-19, 2003.
[14] WANG J Y, STEPHEN J JONES. Resistance and propulsion tests of CCGS TERRY FOX in ice - from model tests to full scale correlation [C]//SNAME 8th International Conference and Exhibition on Performance of Vessels and Structures in Ice, Banff, Alberta, Canada, July 2008.
[15] 吴刚, 王燕舞, 张东江. 中国极地破冰船总体与结构设计技术现状与展望[J]. 中国造船, 2020, 61(1): 194-203.
WU G, WANG Y W, ZHANG D J. Research status and prospect of general and structural design technology of polar icebreaker in China[J]. Shipbuilding of China, 2020, 61(1): 194-203.