针对船舶直流组网系统中柴油发电机整流器与储能双向DC/DC变流器的功率分配、蓄电池组SOC均衡问题,设计一种双模式下的储能双向DC/DC变流器控制策略。在仅蓄电池组供电模式下,采用基于SOC差值的自适应下垂系数控制策略,并结合模糊控制理论设计变加速因子均衡方法;在蓄电池组与柴油发电机并联供电模式下,利用蓄电池响应瞬时功率变化,运用模型预测控制方法对电流控制环进行了优化。结果表明,该控制策略能够实现功率精确分配、加速蓄电池均衡,并提升系统动态响应能力。
A dual-mode control strategy for the bidirectional DC/DC converter in the energy storage system was designed to address the power distribution between the diesel generator rectifier and the bidirectional DC/DC converter, as well as the SOC balancing of the battery pack in a shipboard DC grid system. In the battery-only power supply mode, an adaptive droop coefficient control strategy based on SOC differences was adopted, and a variable acceleration factor balancing method was designed by incorporating fuzzy control theory. In the parallel power supply mode with both the battery pack and the diesel generator, the battery was utilized to respond to instantaneous power changes, and the model predictive control method was applied to optimize the current control loop. The results demonstrate that this control strategy can achieve precise power distribution, accelerate battery balancing, and enhance the dynamic response capability of the system.
2025,47(22): 148-154 收稿日期:2025-2-22
DOI:10.3404/j.issn.1672-7649.2025.22.021
分类号:U665.1
作者简介:朱鑫祥(1997 – ),男,硕士研究生,研究方向为轮机仿真及自动化
参考文献:
[1] 付立军, 刘鲁锋, 王刚, 等. 我国舰船中压直流综合电力系统研究进展[J]. 中国舰船研究, 2016, 11(1): 72-79.
FU L J, LIU L F, WANG G, et al. Research progress of medium-voltage DC integrated power system for Chinese naval ships[J]. Chinese Journal of Ship Research, 2016, 11(1): 72-79.
[2] 杨光, 牟照欣, 吴迪, 等. 船舶直流组网电力推进技术发展优势[J]. 舰船科学技术, 2017, 39(13): 8-14.
YANG G, MOU Z X, WU D, et al. Development advantages of shipboard DC grid electric propulsion technology[J]. Ship Science and Technology, 2017, 39(13): 8-14.
[3] 姜江. 交直流组网技术电力推进系统的对比研究[J]. 船电技术, 2024, 44(3): 74-76.
JIANG J. Comparative study of electric propulsion systems based on AC and DC grid technologies[J]. Marine Electric & Electronic Technology, 2024, 44(3): 74-76.
[4] 周寅正, 陈俐. 基于模型预测控制的双机组混合动力船舶能量管理研究[J]. 中国舰船研究, 2024, 19(S1): 74-83.
ZHOU Y Z, CHEN L. Research on energy management of dual-unit hybrid-powered ships based on model predictive control[J]. Chinese Journal of Ship Research, 2024, 19(S1): 74-83.
[5] MORSTYN T, HREDZAK B, AGELIDIS V G. Control strategies for microgrids with distributed energy storage systems: an overview[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 3652-3666.
[6] 王凯, 张继勇, 杨树德, 等. 改进型分布式储能SOC自适应下垂控制[J/OL]. 电气工程学报, 1-8[2025-02-17].
WANG K, ZHANG J Y, YANG S D, et al. Improved distributed energy storage SOC adaptive droop control[J/OL]. Journal of Electrical Engineering, 1-8[2025-02-17].
[7] CHOWDHURY S M, BADAWY M O, SOZER Y, et al. A novel battery management system using the duality of the adaptive droop control theory[J]. IEEE Transactions on Industry Applications, 2019, 55(5): 5078-5088.
[8] 徐戎, 王跃, 潘高峰, 等. 基于双下垂控制的船舶直流组网储能双向DC/DC变流器控制方法[J]. 控制与信息技术, 2020(3): 73-76+92.
XU R, WANG Y, PAN G F, et al. Control method of bidirectional DC/DC converter for shipboard DC grid energy storage based on dual droop control[J]. Control and Information Technology, 2020(3): 73-76+92.
[9] 张良, 闫凯宏, 冷祥彪, 等. 基于SOC下垂控制的独立直流微电网协调控制策略研究[J]. 电力系统保护与控制, 2021, 49(12): 87-97.
ZHANG L, YAN K H, LENG X B, et al. Research on coordinated control strategy for an independent DC microgrid based on SOC droop control[J]. Power System Protection and Control, 2021, 49(12): 87-97.
[10] 刘胜崇, 帕孜来·马合木提, 葛震君. 基于模糊控制的蓄电池系统储能单元SOC均衡方法[J]. 现代电子技术, 2020, 43(24): 135-139.
LIU S C, PAZILAI M H M T, GE Z J. Fuzzy control based SOC equalization method for battery energy storage unit[J]. Modern Electronics Technique, 2020, 43(24): 135-139.
[11] 黄翔, 李留根. 基于模糊控制的直流微电网SOC均衡控制策略[J]. 电力学报, 2019, 34(4): 375-381.
HUANG X, LI L G. DC microgrid SOC equalization control strategy based on fuzzy control[J]. Journal of Electric Power, 2019, 34(4): 375-381.