航运是国际贸易运输最主要的方式之一,是联系各国贸易的重要纽带,但同时航运业也是耗能大户。如何提高航运能效,减少污染成为了目前亟待解决的问题。船舶轻量化是航运节能减排的最主要措施之一,有助于降低成本、改善航行性能、提升操纵稳定性等。本文从轻量化材料和轻量化设计2个角度,论述了船舶轻量化技术的概念、发展现状及应用情况等;从仿生设计以及增材制造技术2个方向展望未来新型船舶轻量化技术。
Shipping is one of the most important ways of international trade transportation and an important link connecting trade among countries. However, at the same time, the shipping industry is also a major energy consumer. How to improve shipping energy efficiency and reduce pollution has become an urgent problem to be solved at present. Ship lightweighting is one of the most important measures for energy conservation and emission reduction in shipping, which helps to reduce costs, improve navigation performance, and enhance handling stability, etc. This article discusses the concept, development status and application of ship lightweighting technology from two perspectives: lightweight materials and lightweight design. The future new lightweight technologies for ships are prospected from two directions: bionic design and additive manufacturing technology.
2025,47(23): 1-9 收稿日期:2025-3-6
DOI:10.3404/j.issn.1672-7649.2025.23.001
分类号:U668
基金项目:国家自然科学基金面上项目(52475398)
作者简介:杨磊(1988-),男,教授,研究方向为轻量化/承载一体化功能点阵结构的设计、制备及力学分析
参考文献:
[1] 吴嘉蒙, 汤雅敏, 朱文博, 等. 轻量化结构设计的新颖度评价及安全评估方法[J]. 船舶, 2024, 35(1): 118-129
WU J M, TANG Y M, ZHU W B, et al. Novelty evaluation and safety assessment method for lightweight structural design[J]. Ship & Boat, 2024, 35(1): 118-129
[2] 李碧英. 航运业节能减排现状及其低碳发展的途径[J]. 工程研究–跨学科视野中的工程, 2012, 4(3): 260-269
LI B Y. The status quo of energy saving and emission reduction in shipping industry and its approach to low-carbon development[J]. Journal of Engineering Studies, 2012, 4(3): 260–269
[3] 胡可一, 王冰. 数字化变革——船舶设计高质量发展之路[J]. 船舶, 2023, 34(2): 1.
HU K Y, WANG B. Digital transformation: the way to high-quality development of ship design[J]. Ship & Boat, 2023, 34(2): 1–13.
[4] 李义. 船舶结构轻量化设计及建造技术研究[J]. 西部交通科技, 2022 (11): 183–185.
LI Y. Research on lightweight design and construction technology of ship structures[J]. Western China Communication Science & Technology, 2022 (11): 183–185.
[5] HASSAN H Z, SAEED N M. Advancements and applications of lightweight structures: a comprehensive review[J]. Discover Civil Engineering, 2024, 1(1): 47.
[6] HEISKARI J M. Engineering strategies for designing lightweight ship windows[J]. 2024.
[7] 高原, 黄进浩, 王永军, 等. 基于拓扑优化和尺寸优化的水下耐压球壳轻量化设计[J]. 舰船科学技术, 2019, 41(21): 54–58.
GAO Y, HUANG J H, WANG Y J, et al. Lightweight study of spherical shell based on topology and size optimization[J]. Ship Science and Technology, 2019, 41(21): 54–58.
[8] 黄陈哲. 邮轮轻量化设计方法研究 [D]. 武汉: 武汉理工大学, 2021.
[9] 刘惠智, 梅启林, 丁国民, 等. 石墨烯/改性聚醚醚酮的制备及性能研究[J]. 复合材料科学与工程, 2023(7): 13-18.
LIU H Z, MEI Q L, DING G M, et al. Preparation and performance of graphene/modified polyetheretherketone[J]. Composites Science and Engineering, 2023(7): 13-18.
[10] 胡海亮. 船舶与海洋工程中铝合金的运用研究[J]. 舰船科学技术, 2023, 45(4): 45–48.
HU H L. Research on application of aluminum alloy in ship and marine engineering[J]. Ship Science and Technology, 2023, 45(4): 45–48.
[11] 张栗铭, 杨德庆. 力学与声学超材料在船舶工程中的应用研究综述[J]. 中国舰船研究, 2023, 18(2): 1-19+47.
ZHANG L M, YANG D Q. Review on the applied research of mechanical and acoustic metamaterials in ship engineering[J]. Chinese Journal of Ship Research, 2023, 18(2): 1–19+47.
[12] BUSCH, J, W. BARTHLOTT, M. Brede, W. TERLAU, et al. Bionics and green technology in maritime shipping: an assessment of the effect of Salvinia air-layer hull coatings for drag and fuel reduction [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 377(2138).
[13] 陈思均. 大型客船轻量化设计研究 [D]. 哈尔滨: 哈尔滨工程大学, 2021.
[14] 陈南华, 邓建通, 钱雯, 等. 42.5 m铝合金高速船结构设计[J]. 船海工程, 2021, 50(5): 82-86.
CHEN N H, DENG J T, QIAN W, et al. Structural design of 42.5 m aluminum alloy high-speed craft[J]. Ship & Ocean Engineering, 2021, 50(5): 82–86.
[15] SHAO L, ZHANG T, LI L, et al. A low-cost lightweight entropic alloy with high strength[J]. Journal of Materials Engineering and Performance, 2018, 27: 6648–6656.
[16] BUCHANAN C A, CHARARA M, SULLIVAN J L, et al. Lightweighting shipping containers: Life cycle impacts on multimodal freight transportation[J]. Transportation Research Part D: Transport and Environment, 2018, 62: 418-432.
[17] 吴建新. 钛合金材料在船舶材料上的应用[J]. 船舶物资与市场, 2020(174): 5–6.
WU J X. The application of titanium alloy materials in ship materials[J]. Marine Equipment/Materials & Marketing, 2020(174): 5–6.
[18] 夏申琳, 王刚, 杨晓, 等. 钛及钛合金在船舶中的应用[J]. 金属加工(冷加工), 2016(19): 40-41.
XIA S L, WANG G, YANG X, et al. Titanium and titanium alloys in marine applications[J]. Metal Working(Metal Cutting), 2016(19): 40-41.
[19] HASHIMOTO, H , ISOBE, S , HASHIMOTO, N, et al. Synthesis of Li-Mg-Al-Ti based lightweight high entropy alloys by mechanical alloying and investigation of conditions for solid solution formation [J]. Journal of Alloys and Metallurgical Systems, 2023, 4.
[20] CHAE M J, SHARMA A, OH M C, et al. Lightweight AlCuFeMnMgTi high entropy alloy with high strength-to-density ratio processed by powder metallurgy[J]. Metals and Materials International, 2021, 27: 629-638.
[21] XIONG W, CHENG L, ZHAn S, et al. Recent advances on lightweight high-entropy alloys: process, design, and applications[J]. High Entropy Alloys & Materials, 2023, 1(2): 175–194.
[22] 汪文杰, 贾东宁, 黄贤青, 等. 深潜装备材料发展关键技术研究[J]. 舰船科学技术, 2024, 46(3): 1-7
WANG W J, JIA D N, HUANG X Q, et al. Research on key technologies of deep diving submersible material development[J]. Ship Science and Technology, 2024, 46(3): 1-7
[23] BALEY C, DAVIES P, TROALEN W, et al. Sustainable polymer composite marine structures: developments and challenges[J]. Progress in Materials Science, 2024: 101307.
[24] 李晓文, 朱兆一, 李妍, 等. 复合材料-金属混合船舶极限强度研究综述[J]. 船舶力学, 2020, 24(05): 681-692.
LI X W, ZHU Z Y, LI Y, et al. A review on ultimate strength of composite-metal hybrid ships[J]. Journal of Ship Mechanics, 2020, 24(05): 681–692.
[25] ISMAIL A, ZUBAYDI A, PISCESA B, et al. A novel fiberglass-reinforced polyurethane elastomer as the core sandwich material of the ship–plate system[J]. Journal of the Mechanical Behavior of Materials, 2023, 32(1): 20220288.
[26] STENIUS I, ROSÉN A, KUTTENKEULER J. On structural design of energy efficient small high-speed craft[J]. Marine Structures, 2011, 24(1): 43–59.
[27] BEHNISCH, F, BRÜTSCH, J, WERNER, H O, et al. The direct sandwich composite molding (D-SCM) process: sandwich manufacturing and characterization[J]. Journal of Composites Science, 2022, 6(3).
[28] DI BELLA G, GALTIERI G, BORSELLINO C. Three-point flexural properties of bonded reinforcement elements for pleasure craft decks[J]. Applied Composite Materials, 2018, 25: 21–34.
[29] 张国腾, 陈蔚岗, 唐桂云. 复合材料轻量化技术在舰船制造领域的应用[J]. 纤维复合材料, 2010, 27(1): 31-35
ZHANG G T, CHEN W G, TANG G Y. Application of lightweight compostie technology in manufacturing naval ship[J]. Fibrous composite, 2010, 27(1): 31-35
[30] 郝用兴, 苗嘉峰, 卢丙举, 等. 碳纤维复合材料在水下耐压舱上的应用[J]. 舰船科学技术, 2024, 46(19): 1-6
HAO Y X, MIAO J F, LU B J, et al. The application of carbon fiber composite material in underwater pressure cabin[J]. Ship Science and Technology, 2024, 46(19): 1-6
[31] YILDIZ T. Design and analysis of a lightweight composite shipping container made of carbon fiber laminates[J]. Logistics, 2019, 3(3): 18.
[32] 李琛, 欧阳清. 基于增材制造的多胞结构船底板框架性能研究[J]. 舰船科学技术, 2019, 41(1): 44-47.
LI C, OU Y Q. Research on the performance of bottom plate frame with multi-cell structure based on AM[J]. Ship Science and Technology, 2019, 41(1): 44-47.
[33] MOHANTY A K, VIVEKANANDHAN S, TRIPATHI N, et al. Sustainable composites for lightweight and flame retardant parts for electric vehicles to boost climate benefits: a perspective [J]. Composites Part C: Open Access, 2023.
[34] HUI F, ZHU H D, LI A J, et al. A multiscale material-structure-hydroelasticity coupled analytical model for floating sandwich structures with hierarchical cores [J]. Marine Structures, 2021, 79.
[35] NIAN, Y Z, SHUI W, XIAO W, et al. Study on crashworthiness of nature-inspired functionally graded lattice metamaterials for bridge pier protection against ship collision [J]. Engineering Structures, 2023, 277.
[36] 董明海, 郭永升, 黄帅鹏, 等. 水压工况下船底结构拓扑优化设计[J]. 舰船科学技术, 2016, 38(16): 7-9.
DONG M H, GUO Y S, HUANG S P, et al. Pressure hull structural topology optimization design conditions[J]. Ship Science and Technology, 2016, 38(16): 7–9.
[37] 严卫祥, 冯伟, 赵文斌, 等. 散货船双层底纵桁板缝布置和尺寸优化设计[J]. 中国舰船研究, 2023, 18(3): 32-37
YAN W X, FENG W , ZHAO W B, et al. Plate seam arrangement and size optimization of bulk carrier double bottom girders[J]. Chinese Journal of Ship Research, 2023, 18(3): 32-37
[38] 佘小林, 杨德庆. 船舶舵机基座轻量化设计[J]. 中国舰船研究, 2020, 15(1): 170-176.
SHE X L, YANG Q D. Lightweight design of ship steering gear foundation[J]. Chinese Journal of Ship Research, 2020, 15(1): 170-176.
[39] 黄陈哲, 向阳, 黄进安. 船舶加筋板轻量化设计研究[J]. 舰船科学技术, 2021, 43(3): 13-19
HUANG C Z, XIANG Y, HUANG J A. Research on lightweight design method of cruise ship[J]. Wuhan University of Technology, 2021, 43(3): 13-19
[40] TOFTEGAARD H, LYSTRUP A. Design and test of lightweight sandwich T-joint for naval ships[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36(8): 1055–1065.
[41] 梁晓峰, 隆强, 刘华峰, 等. 基于形状-尺寸联合优化的雷达桅杆轻量化设计研究[J]. 现代机械, 2022(230): 20-24.
LIANG X F, LONG Q, LIU H F, et al. Lightweight design of radar mast based on shape-size combined optimization[J]. Modern Machinery, 2022(230): 20–24.
[42] 沈晓曦. 油船结构拓扑优化研究 [D]; 哈尔滨. 哈尔滨工程大学, 2019.
[43] KENDIBILIR A, KEFAL A. Enhanced ship cross-section design methodology using peridynamics topology optimization[J]. Ocean Engineering, 2023, 286: 115531.
[44] 张聪, 贾德君, 李范春, 等. 三体船横舱壁拓扑优化设计及力学分析[J]. 哈尔滨工程大学学报, 2020, 41(6): 805-811.
ZHANG C, JIA D J, LI F C, et al. Topology optimization design and mechanical property analysis of the transverse bulkhead of a trimaran[J]. Journal of Harbin Engineering University, 2020, 41(6): 805–811.
[45] 龙周. 基于代理模型的船舶结构轻量化技术研究 [D]. 上海: 上海交通大学, 2019.
LONG Z. Lightweight Technology of Ship Structure Based on Surrogate Model [D]. Shanghai: Shanghai Jiao Tong University, 2019.
[46] 熊勇. 拓扑优化在某船用汽轮机转子支座轻量化设计中的应用[J]. 舰船科学技术, 2016, 38(8): 34-36.
XIONG Y. Application of topology optimization in the lightweight design of a marine steam turbine rotor support[J]. Ship Science and Technology, 2016, 38(8): 34-36.
[47] 董有凡, 胡义, 耿国祥, 等. 基于拓扑优化与正交试验的锚机机架轻量化研究[J]. 制造业自动化, 2023, 45(4): 146-150+216.
DONG Y F, HU Y, GENG G X, et al. Research on lightweight design of windlass frame based on topology optimization and orthogonal experiment[J]. Manufacturing Automation, 2023, 45(4): 146-150+216.
[48] TUSWAN T, ISMAIL A, ZUBAYDI A, et al. A critical review on structural testing and assessment of lightweight sandwich structure for ship structure application[C]//AIP Conference Proceedings. AIP Publishing, 2023, 2674(1). 030031.
[49] WANG H, XIAO W, ZHAO M, et al. Dynamic response and energy absorption of aluminum foam sandwich under low–velocity impact[J]. Journal of Sandwich Structures & Materials, 2024, 26(4): 507-523.
[50] LI Y, LI N, LIU W, et al. Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design[J]. Nature communications, 2023, 14(1): 4488.
[51] ROMANOFF J, LAAKSO A, VARSTA P. Improving the shear properties of web-core sandwich structures using filling material[M]//Analysis and Design of Marine Structures. CRC Press, 2009: 157–162.
[52] SUJIATANTI S H, ZUBAYDI A, BUDIPRIYANTO A. Finite element analysis of ship deck sandwich panel[J]. Applied Mechanics and Materials, 2018, 874: 134–139.
[53] SAN H N, LU G. A review of recent research on bio-inspired structures and materials for energy absorption applications [J]. Composites Part B: Engineering, 2020, 181.
[54] LUO K, YAN L, ZHU Z, et al. Application of bionic technology in marine cruise equipment: research progress and development trends[J]. Journal of Bionic Engineering, 2024, 21(3): 1117–1155.
[55] LIU H, CHNG Z X, WANG G, NG B F, et al. Crashworthiness improvements of multi-cell thin-walled tubes through lattice structure enhancements [J]. International Journal of Mechanical Sciences, 2021, 210.
[56] NIAN Y Z, WAN S, ZHOU P, et al. Energy absorption characteristics of functionally graded polymer-based lattice structures filled aluminum tubes under transverse impact loading [J]. Materials & Design, 2021, 209.
[57] YAO K, ZHANG K, ZHANG Y, et al. Damping characteristic study of ship bionic anti-rolling device[J]. Ships and Offshore Structures, 2021, 16(10): 1067-1077.
[58] SCHRADER L U. Passive drag reduction via bionic hull coatings[J]. Journal of Ship Research, 2019, 63(3): 206-218.
[59] 李方正, 李博, 郭丹. 中国增材制造产业发展现状与趋势展望[J]. 工业技术创新, 2023, 10(3): 1-8.
LI F Z, LI B, GUO D. Development status and trend prospective of china's additive manufacturing industry[J]. Industrial Technology Innovation, 2023, 10(3): 1-8.
[60] 王勇, 周雪峰. 激光增材制造研究前沿与发展趋势[J]. 激光技术, 2021, 45(4): 475-484.
WANG Y, ZHOU X F. Research front and trend of specific laser additive manufacturing techniques[J]. Laser Technology, 2021, 45(4): 475-484.
[61] 王浩, 刘坤, 吴红, 等. 船舶铝合金增材制造技术的研究现状及展望[J]. 材料开发与应用, 2024, 39(2): 17-27,43.
WANG H, LIU K, WANG H, et al. Research status and prospect of additive manufacturing technology of ship aluminum alloys[J]. Development and Application of Materials, 2024, 39(2): 17-27,43.
[62] 任宇航, 刘佳蓬, 杨光, 等. 激光沉积TA15钛合金疲劳裂纹扩展行为研究[J]. 应用激光, 2020, 40(2): 199-204.
REN Y H, LIU J P, YANG G, et al. Fatigue crack growth behavior of laser deposited TA15 titanium alloy[J]. Applied Laser, 2020, 40(2): 199-204.