为了分析存在轴承磨损严重、异常振动的某船轴系的艉轴处截断及液压联轴节损伤情况,通过轴系校中获取其所在轴向位置处的相对转角变化情况,应用Abaqus软件建立某船联轴节-艉轴过盈配合的简化结构有限元接触模型,验证了该过盈配合结构在弯曲载荷作用下发生微动损伤的可能性,分析了不同过盈量对接触应力、摩擦剪切力与微动滑移区域的影响。结果显示,某种异常振动舰船轴系艉轴-联轴节所处轴向位置的相对转角变化是中间轴-艉轴联轴节的10余倍;而在类似某种异常振动的舰船轴系艉轴处截断的轴向位置处,进口的某船轴系相对转角变化也是中间轴-艉轴联轴节的10余倍,但是进口的某船轴系艉轴未截断,且运行良好,因此需要认真设计液压联轴节所处的轴向位置。在弯曲载荷作用下,该过盈配合结构配合边缘发生微动损伤,艉轴轴承处转角相对变化较大,会引起偏磨。
To analyze the truncation and damage of the hydraulic coupling at the stern shaft of a certain type of ship shafting with severe bearing wear and abnormal vibration, the relative angular changes at the axial positions were obtained through shaft alignment. A simplified structural finite element contact model of the ship coupling-stern shaft interference fit was established using Abaqus software. The possibility of fretting damage of the interference structure under bending load was verified, and the influence of different interference amounts on contact stress, frictional shear force, and fretting slip region was analyzed. The results show that the relative angular change at the axial position of the stern shaft-coupling in a certain ship with abnormal vibration is more than 10 times that of the intermediate shaft-stern shaft coupling. In a similar case of a ship with abnormal vibration, the relative angular change at the axial position of the stern shaft where the shaft was cut off is also more than 10 times that of the intermediate shaft-stern shaft coupling. However, the stern shaft of the imported ship's shafting was not cut off and it runs well. Therefore, it is necessary to carefully design the axial position of the hydraulic coupling. Under the action of bending load, fretting damage occurs at the edge of the interference fit structure. The relative change in the angle at the stern tube bearing is relatively large, which will cause eccentric wear.
2025,47(23): 19-25 收稿日期:2025-2-20
DOI:10.3404/j.issn.1672-7649.2025.23.003
分类号:U664.2;TH117.1
基金项目:国家自然科学基金资助项目(52275505)
作者简介:张新宝(1965-),男,博士,教授,研究方向为公差理论、精密机械与轴系特性优化
参考文献:
[1] 张新宝, 顾兴晨. 推进轴系曲线校中工艺对轴系振动的影响[J]. 中国造船, 2016, 57(4): 124-130.
ZHANG X B, GU X C. Influence of shafting curve alignment process on shafting vibration[J]. Shipbuilding of China, 2016, 57(4): 124-130.
[2] 袁才钦, 李亚波, 杨凯, 等. 铁路车轴过盈配合面微动损伤分析及有限元仿真[J]. 摩擦学学报, 2020, 40(4): 520–530.
YUAN C Q, LI Y B, YANG K, et al. Analysis and finite element simulation of fretting damage on interference fit surface of railway axle [J]. Tribology, 2020, 40(4): 520-530.
[3] 高子航, 周瑞平, 黄国兵. 某船液压联轴器轴段划痕修复方案分析[J]. 中国修船, 2021, 34(3): 34-38
GAO Z H, ZHOU R P, HUANG G B. Analysis of repair scheme for shaft scratches of hydraulic coupling of a ship[J]. China Shiprepair, 2021, 34(3): 34-38
[4] 周仲荣. 微动磨损[M]. 北京: 科学出版社, 2002.
[5] WATERHOUSE R B. Fretting fatigue[J]. International Mater Reviews 1992, 37: 77-97.
[6] 杨广雪, 谢基龙, 李强, 等. 过盈配合微动损伤的关键参数[J]. 机械工程学报, 2010, 46(16): 53-59.
YANG G X, XIE J L, LI Q, et al. Key parameters of interference fit fretting damage[J]. Journal of Mechanical Engineering, 2010, 46(16): 53-59.
[7] 张远彬, 鲁连涛, 曾东方, 等. 微动磨损对过盈配合结构微动参量的影响[J]. 摩擦学学报, 2015, 35(4): 485-494
ZHANG Y B, LU L T, ZENG D F, et al. Influence of fretting wear on fretting parameters of interference fit structures[J]. Tribology, 2015, 35(4): 485-494
[8] 殷超超, 黄海鸿, 周丹, 等. 激光表面织构对过盈配合界面微动损伤的影响[J]. 摩擦学学报, 2023, 43(12): 1478-1485.
YIN C C, HUANG H H, ZHOU D, et al. Effect of Laser Surface Texturing on Fretting Damage of Interference FitInterface[J]. Tribology, 2023, 43(12): 1478-1485.
[9] CB/Z 338-2005, 船舶推进轴系校中[S]. 国防科学技术工业委员会, 2006.
[10] 朱理, 庞福振, 康逢辉. 螺旋桨激励力下的舰船振动特性分析[J]. 中国造船, 2011, 52(2): 8-15
ZHU L, PANG F Z, KANG F G. Analysis of ship vibration characteristics under propeller excitation force[J]. Shipbuilding of China, 2011, 52(2): 8-15
[11] 周萍, 赵应龙, 朱成华. 基于轴系振动特性的轴承磨损容许量计算方法[J]. 兵器装备工程学报, 2023, 44(10): 45-51
ZHOU P, ZHAO Y L, ZHU C H. Calculation method of allowable bearing wear based on shafting vibration characteristics[J]. Journal of Ordnance Equipment Engineering, 2023, 44(10): 45-51
[12] 顾兴晨. 船舶推进轴系曲线轴线模型及轴承承载特性研究[D]. 武汉: 华中科技大学, 2017.