为研究双壳舰艇抗冲击特性,建立带防护层充水双层结构冲击动力学理论模型,模拟研究水下爆炸载荷下双层舰船结构响应特性与流场空化现象,并分析舰船外壳敷设防护层和模型参数变化对双层壳体抗冲击性能影响。基于可压缩多相流、等熵空化流和塑性冲击波理论,建立外流体-含防护层外板-舷间水、舷间连接结构-内板非线性双面水流固耦合冲击动力学等效模型。研究外板敷设塑性多孔防护层的抗冲效能,分析防护层参数变化、舷间连接结构刚度变化和内板支撑刚度变化对防护层抗冲效能的影响规律。结果表明,外板敷设防护层可使流固耦合面冲击波冲量降低60%,外板和内板速度峰值分别降低88%和92%。防护层力学特性和内板支撑弹簧刚度对防护层抗冲效能影响较大,软防护层抗冲效能好,但压缩变形大;内板支撑强,则更利于防护层变形吸能。
To investigate the shock resistance capability of double-hulled vessels, a theoretical model of the impact dynamics of the water-filled double-hulled structure with elastic connection was established to simulate the response characteristics and flow field cavitation of the double-hulled ships under underwater explosion loads, and the effects of the protective layer installed on the hull and model parameter changes on the impact resistance of the double-hulled ships were analyzed. Based on the theory of compressible multiphase flow, isentropic cavitation flow, and plastic shock waves, a nonlinear impact dynamics model coupling the outer fluid, the outer plate with protective layer, the interboard water, interboard connection structure and inner plate is established. The impact of the plastic porous protective layer laid on the outer plate was studied, and the effects of the parameters of the protective layer, the stiffness of the jointed structure and the stiffness of the inner plate on the impact of the protective layer were analyzed. The results show that the shock wave impulse of the fluid-structure coupling surface can be reduced by 60%, and the peak velocity of the outer plate and the inner plate can be reduced by 88% and 92%, respectively. The mechanical properties of the protective layer and the stiffness of the inner plate support spring have a great influence on the impact performance of the protective layer, and the soft protective layer has a good impact performance, but the compression deformation is large. The inner plate support is strong, which is more conducive to the deformation and energy absorption of the protective layer.
2025,47(23): 26-35 收稿日期:2025-2-14
DOI:10.3404/j.issn.1672-7649.2025.23.004
分类号:U663.1;O383+.1
基金项目:国家自然科学基金资助项目(11802180, 12202277, 52071150);湖北省基金面上项目资助项目(2022CFB020);船舶振动噪声重点实验室基金资助项目(JCKY2021207CI04)
作者简介:陈国彩(2003-),男,硕士研究生,研究方向为冲击动力学
参考文献:
[1] 姚熊亮, 梁德利, 许维军. 结构参数变化对双层圆柱壳冲击响应的影响[J]. 哈尔滨工程大学学报, 2006, 27(4): 477-483.
YAO X L, LIANG D L, XV W J. The effect of changing structure parameters on impulse response of double cylinder shell structure[J]. Journal of Harbin Engineering University, 2006, 27(4): 477-483.
[2] 李玉节, 李国华, 赵本立, 等. 双层壳体对水下爆炸作用的影响研究[J]. 船舶力学, 2006, 10(5): 127-134.
LI Y J, LI G H, ZHAO B L, et al. Influence of double hull structure on the effects of underwater explosion[J]. Journal of Ship Mechanics, 2006, 10(5): 127-134.
[3] 肖巍, 张阿漫, 汪玉. 具有内域的双层加筋圆柱壳动响应特性[J]. 力学学报, 2014, 46(1): 120-127.
XIAO W, ZHANG A M, WANG Y. Dynamic response of double ring-stiffened cylindrical hull with internal fluid[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 120-127.
[4] HUANG S Z, TONG X D, CHEN Y, et al. Effects of internal fluid on the dynamic behaviors of double cylindrical hulls subjected to underwater explosion[J]. Journal of Offshore Mechanics and Arctic Engineering, 2022, 144(4): 041701.
[5] GAO F, JI C, LONG Y, et al. Numerical investigation of the dynamic response of CWC structures subjected to underwater explosion loading[J]. Ocean Engineering, 2020, 203: 107214.
[6] 叶珍霞, 谌勇. 水下爆炸载荷下圆管型加筋缓冲防护性能研究[J]. 噪声与振动控制, 2023, 43(1): 239-243+274.
YE Z X, CHEN Y. Shock mitigation of circular tubular stiffeners subjected to underwater explosion loads[J]. Noise and vibration control, 2023, 43(1): 239-243+274.
[7] ZHANG Z F, MING F R, ZHANG A M. Damage characteristics of coated cylindrical hulls subjected to underwater contact explosion [J]. Shock and Vibration, 2014, 2014.
[8] ZHANG Z F, LI H L, WANG L K, et al. Protection mechanism of underwater double-hull coated with UHMW-PE subjected to shaped charge[J]. Ocean Engineering, 2023, 272: 113842.
[9] LIU J, AN F J, NIU Z Y, et al. Study on the blast-resistance of polyurea-steel plates subjected to underwater explosion[J]. Ocean Engineering, 2022, 265: 111814.
[10] YIN C Y, JIN Z Y CHEN Y, et al. Effects of sacrificial coatings on stiffened double cylindrical hulls subjected to underwater blasts[J]. International Journal of Impact Engineering, 2020, 136: 103412.
[11] ZHANG Y, LI Y G, GUO K L, et al. Dynamic mechanical behaviour and energy absorption of aluminium honeycomb sandwich face plates under repeated impact loads[J]. Ocean Engineering, 2021, 219: 108344.
[12] WU X, LI Y G, CAI W, et al. Dynamic responses and energy absorption of sandwich face plate with aluminium honeycomb core under ice wedge impact[J]. International Journal of impact Engineering, 2022, 162: 104137.
[13] KORUPOLU D K, BUDARAPU P R, VUSA V R, et al. Impact analysis of hierarchical honeycomb core sandwich structures[J]. Composite Structures, 2022, 280: 114827.
[14] SUN G Y, HUO X T, WANG H X, et al. On the structural parameters of honeycomb-core sandwich face plates against low-velocity impact[J]. Composites Part B: Engineering, 2021, 216: 108881.
[15] SCHIFFER A, TAGARIELLI V L. The one-dimensional response of a water-filled double hull to underwater blast: experiments and simulations[J]. International journal of impact engineering, 2014, 63: 177-187.
[16] YIN C Y, YU H T, JIN Z Y, et al. Investigation of shock wave propagation and water cavitation in a water-filled double plate subjected to underwater blast[J]. International Journal of Mechanical Sciences, 2023, 253: 108400.
[17] YIN C Y, LIU J X, JIN Z Y, et al. A comparative study of underwater shock wave propagation in the single or water-filled double plate[J]. Available at SSRN 4339665, 2023.