复合材料因其比刚度高、比强度大和可设计性强等特性,常被用作水下航行器耐压壳体材料。水下航行器在航行过程中对低噪声性能有严苛要求,结构声学优化设计是降低其壳体声振水平的基础,因此本文开展了复合材料壳体结构声振预报及优化设计研究。针对水下无人航行器模型,本文建立了“半球-圆柱-圆锥”复合材料组合结构的振动与声辐射特性预报模型。基于所建立的复合材料结构模型,采用有限元方法分析了静水压力、激励位置、壳体厚度及损耗因子对振动和声辐射特性的影响。研究表明,复合材料壳体在较低频段声振响应幅值较低,随频率升高呈现小幅增加趋势;增加壳体厚度会引发共振峰频率向高频方向迁移;损耗因子的提升对较高频段声辐射具有显著抑制作用,而对较低频段影响有限;静水压力增大不仅导致主要共振峰频率向高频偏移,还在部分共振峰处产生明显的声辐射幅值衰减效应。
Due to high specific stiffness, high specific strength and strong designability, composite materials are often used as the material for the pressure hull of underwater vehicles. Underwater vehicles have strict requirements for low noise performance during navigation, and structural acoustic optimization design is the basis for reducing the acoustic vibration level of their hulls. Therefore, this paper conducts research on the vibration and acoustic radiation prediction and optimization design of composite material shell structures. For the model of unmanned underwater vehicles, this paper establishes a vibration and acoustic radiation characteristic prediction model of the "hemisphere-cylinder-cone" composite material combined structure. Based on the established composite material structure model, the finite element method is used to analyze the influence of hydrostatic pressure, excitation position, shell thickness and loss factor on vibration and acoustic radiation characteristics. The research shows that the acoustic vibration response amplitude of the composite material shell is relatively low in the lower frequency band and shows a slight increase trend with the increase of frequency; increasing the shell thickness will cause the resonance peak frequency to shift to the high-frequency direction; the increase of the loss factor has a significant inhibitory effect on the acoustic radiation in the higher frequency band, but has a limited effect on the lower frequency band; the increase of hydrostatic pressure not only causes the main resonance peak frequency to shift to the high-frequency direction, but also produces a significant attenuation effect on the acoustic radiation amplitude at specific characteristic frequencies.
2025,47(23): 43-49 收稿日期:2025-2-8
DOI:10.3404/j.issn.1672-7649.2025.23.006
分类号:U668.1
基金项目:国家自然科学基金资助项目(52305110);中国博士后基金资助项目(2023M742256);机械系统与振动全国重点实验室课题资助项目(MSV202409)
作者简介:杨贺(1998-),男,硕士研究生,研究方向为船舶动力机械振动噪声控制
参考文献:
[1] IMRAN M, SHI D, TONG L, et al. Design optimization of composite egg-shaped submersible pressure hull for minimum buoyancy factor[J]. Defence Technology, 2021, 17(6): 1817–1832.
[2] 王芳, 崔维成. 深海耐压结构研究现状和发展趋势[J]. 船舶工程, 2021, 43(2): 21-27.
[3] 沈克纯, 潘光, 施瑶, 等. 静水压力下纤维缠绕复合材料壳体耐压因子的优化设计(英文)[J]. 船舶力学, 2017, 21(12): 1551-1563.
[4] 范清扬, 刘斌, 雷加静, 等. 极端海况下复合材料高速船的结构响应与损伤研究[J]. 武汉理工大学学报(交通科学与工程版), 2022, 46(5): 837-842.
[5] 仝博, 李永清, 张振海, 等. 复合材料多层圆柱壳振动和声辐射问题研究进展[J]. 材料导报, 2023, 37(2): 256-263.
[6] 王硕, 梅志远, 付晓等. 无人潜器耐压壳体选型与承载特征规律研究[J]. 中国舰船研究, 2024, 19(4): 247-253.
[7] 罗峰, 孔祥韶, 金泽宇, 等. 复合壳体水中高静压试验及极限承载能力分析[J]. 中国舰船研究, 2024, 19(5): 122-130.
[8] 姚嘉, 刘勇琼, 王鹏, 等. 高模量碳纤维复合材料深海耐压壳体结构设计及试验[J]. 高科技纤维与应用, 2024, 49(4): 38-46.
[9] 李永胜, 王纬波, 姜旭, 等. 静水外压下纤维缠绕复合材料圆柱厚壳的稳定性研究[J]. 船舶力学, 2024, 28(9): 1394-1404.
[10] 吴洪瑞, 高国华, 邵东, 等. 复合材料圆柱壳随机动力学解析建模及分析[J]. 兵工学报, 2024, 1–9
[11] 巩华帅, 梅志远, 陈国涛, 等. 典型船用复合材料阻尼性能试验研究[J]. 复合材料科学与工程, 2023(6): 88-94.