为了明确焊接热影响区等部位的点蚀敏感性,评估此材料在海水条件下用于船舶构造时的点蚀变化,研究船用节镍型双相不锈钢S32101点蚀评价方法。本文通过固溶与时效处理制备试样,使用ASTM A1084-15a方法,结合标准腐蚀试验、电化学分析及显微观察,系统研究不锈钢S32101试样的点蚀机理。研究结果表明,所研究不锈钢S32101铁素体含量比例适当,不会对耐点蚀性能产生较大影响,并且试样母材区点蚀敏感性较高。海水温度较高时,船用节镍型双相不锈钢S32101钝化膜破坏并发生点蚀,高温通过弱化钝化膜、加速电化学动力学过程,可提升点蚀与全面腐蚀风险。
In order to clarify the pitting sensitivity of welding heat affected zones and other parts, evaluate the pitting changes of this material when used in ship construction under seawater conditions, and study the pitting evaluation method of S32101 nickel saving duplex stainless steel for ships. Samples were prepared by solid solution and aging treatment, and the pitting mechanism of stainless steel S32101 samples was systematically studied using ASTM A1084-15a method, combined with standard corrosion testing, electrochemical analysis, and microscopic observation. The research results indicate that the appropriate proportion of ferrite content in the studied stainless steel S32101 will not have a significant impact on its pitting corrosion resistance, and the sensitivity of pitting corrosion in the base material area of the sample is relatively high. When the seawater temperature is high, the passivation film of the nickel saving duplex stainless steel S32101 for ships is damaged and pitting corrosion occurs. High temperatures can increase the risk of pitting and overall corrosion by weakening the passivation film and accelerating the electrochemical kinetics process.
2025,47(23): 61-65 收稿日期:2025-6-18
DOI:10.3404/j.issn.1672-7649.2025.23.009
分类号:U668;TP391
基金项目:先进海工与高技术船舶材料生产应用示范平台基金(TC180A6MR)
作者简介:徐博文(1984-),男,硕士,高级工程师,研究方向为船用先进材料
参考文献:
[1] 朱加雷, 郭方涛, 李守根, 等. S32101双相不锈钢U形坡口激光填充焊接修复工艺[J]. 焊接学报, 2024, 45(10): 69-78.
ZHU J L, GUO F T, LI S G, et al. Laser filling welding repair process for U-shaped groove of S32101 duplex stainless steel[J]. Transactions of the China Welding Institution, 2024, 45(10): 69-78.
[2] 李国平, 武敏. 冷变形对S32101双相不锈钢组织和力学性能的影响[J]. 钢铁, 2024, 59(7): 122-129.
LI G P, WU M. Effect of cold deformation on microstructure and mechanical properties of S32101 duplex stainless steel[J]. Iron & Steel, 2024, 59(7): 122-129.
[3] 王宇欣, 郭城湘, 胡月飞, 等. 核电站不锈钢焊接接头的应力腐蚀行为[J]. 腐蚀与防护, 2022, 43(5): 25-29,55.
WANG Y X, GUO C X, HU Y F, et al. Stress corrosion behavior of welded joints of stainless steel in nuclear power plants[J]. Corrosion and Protection, 2022, 43(5): 25-29,55.
[4] 麦嘉琪, 徐鹏程, 丁松, 等. 支持向量回归预测不锈钢的点蚀电位[J]. 上海大学学报(自然科学版), 2022, 28(3): 485-491.
MAI J Q, XU P C, DING S, et al. Prediction of pitting potential for stainless steel by support vector regression[J]. Journal of Shanghai University(Natural Science Edition), 2022, 28(3): 485-491.
[5] 雷欣, 杨天野, 陈婉琦, 等. 核电厂水池覆面用不锈钢结构件在含SO42-及Cl-硼酸溶液中的腐蚀行为[J]. 机械工程材料, 2023, 47(7): 31-36.
LEI X, YANG T Y, CHEN W Q, et al. Corrosion behavior of stainless steel structural parts for nuclear power plant pool cladding in boric acid solution containing[J]. Materials for Mechanical Engineering, 2023, 47(7): 31-36.
[6] 饶思贤, 郭祥钦, 华晓春, 等. 基于扫描电化学显微镜研究316L不锈钢的局部腐蚀行为[J]. 机械工程材料, 2023, 47(10): 68-73.
RAO S X, GUO X Q, HUA X C, et al. Local corrosion behavior of 316L stainless steel studied by scanning electrochemical microscope[J]. Materials for Mechanical Engineering, 2023, 47(10): 68-73.
[7] RAFAEL M, SHOHEI U, EITA T. Ductility loss of a metastable austenitic stainless steel and its tig weldment due to hydrogen embrittlement at low temperatures considering the effect of pre-strain at 4 K[J]. ISIJ International, 2024, 64(14): 2042-2050.
[8] 刘晓军, 方超富, 宁凯, 等. 不锈钢焊管旋压损伤模型建立及损伤因子修正[J]. 计算机仿真, 2023, 40(8): 270-274.
[9] 李杰, 周江维. 船用316L不锈钢管耐海水腐蚀研究[J]. 广船科技, 2023, 43(1): 92-94.