舰船航行受时变性风浪干扰,航姿参数波动大,易引发横侧偏差。本文研究风浪干扰下舰船航行姿态横侧偏差补偿方法。以舰船航行函数为基,通过 IALOS 引导律动态调视线方向,生成适配风浪的期望动态航姿,补偿环境力并为滑模变结构控制提供目标。以该期望航姿为参考,结合滑模变结构控制构建控制模型,设定跟踪误差与滑模面并推导控制律,实现精准跟踪与偏差补偿,保障航行稳定。实验表明,该方法能生成稳定期望航姿,150 s 内快速精准补偿横侧偏差至 0 m 且无超调,抗风浪干扰强,适用于复杂海洋环境,为舰船平稳航行提供保障。
The ship navigation is disturbed by time-varying wind waves, and the attitude parameters fluctuate greatly, which is easy to cause lateral deviation. Therefore, this paper studies the compensation method of lateral deviation of ship navigation attitude under wind wave interference. Based on the navigation function of the ship, the direction of line of sight is dynamically adjusted by the IALOS guidance law to generate the desired dynamic heading and attitude adapted to the wind and waves, compensate the environmental force and provide the target for the sliding mode variable structure control. Taking the desired heading and attitude as a reference, the control model is constructed by combining the sliding mode variable structure control, the tracking error and sliding mode surface are set, and the control law is derived to achieve accurate tracking and deviation compensation, and ensure the stability of navigation. Experiments show that this method can generate a stable desired attitude, quickly and accurately compensate the lateral deviation to 0m within 150s without overshoot, and has strong resistance to wind and wave interference. It is suitable for complex marine environment and provides guarantee for the smooth navigation of ships.
2025,47(23): 66-70 收稿日期:2025-6-24
DOI:10.3404/j.issn.1672-7649.2025.23.010
分类号:U675
基金项目:河北省廊坊市科技计划项目(2017011049)
作者简介:王晓阳(1983-),男,硕士,讲师,研究方向为工程结构弹塑性分析与流体力学
参考文献:
[1] 李昊洋, 张强, 赵恩蕊, 等. 网络欺骗攻击下的智能船舶改进趋近律滑模轨迹跟踪控制[J]. 大连海事大学学报, 2024, 50(2): 41-52.
LI H Y, ZHANG Q, ZHAO E R, et al. Improved reaching law sliding mode trajectory tracking control for intelligent ships under network spoofing attacks[J]. Journal of Dalian Maritime University, 2024, 50(2): 41-52.
[2] 王元慧, 程基涛, 邵燕, 等. 基于固定时间积分滑模观测器的双闭环UUV轨迹跟踪控制[J]. 船舶工程, 2024, 46(6): 94-101+131.
WANG Y H, CHENG J T, SHAO Y, et al. Dual closed-loop uuv trajectory tracking control based on fixed-time integral sliding mode observer[J]. Ship Engineering, 2024, 46(6): 94-101+131.
[3] 张强, 李昊洋, 孟祥飞, 等. 基于Lyapunov理论考虑不确定扰动的船舶自适应跟踪控制[J]. 上海海事大学学报, 2023, 44(1): 8-16.
ZHANG Q, LI H Y, MENG X F, et al. Lyapunov theory-based adaptive tracking control for ships considering uncertain disturbances[J]. Journal of Shanghai Maritime University, 2023, 44(1): 8-16.
[4] 李诗杰, 徐诚祺, 刘佳仑, 等. 船舶自抗扰无模型自适应航迹控制[J]. 中国舰船研究, 2024, 19(1): 280-289.
LI S J, XU C Q, LIU J L, et al. Tracking control of ships based on ADRC-MFAC[J]. Chinese Journal of Ship Research, 2024, 19(1): 280-289.
[5] LEI Y, ZHANG X, MA D. Finite-time adaptive sliding mode trajectory tracking control of ship with input saturation[J]. Ocean engineering, 2024, 313(12): 1.1-1.9.
[6] 徐双, 刘程, 郭玮丽. 基于鲁棒视线制导方法的欠驱动船舶路径跟踪[J]. 大连海事大学学报, 2024, 50(1): 20-27.
XU S, LIU C, GUO W L. Underactuated ship path tracking based on robust line-of-sight guidance method[J]. Journal of Dalian Maritime University, 2024, 50(1): 20-27.
[7] 马俊达, 孙鹤方, 谭冲, 等. 动态约束下船舶固定时间非奇异滑模包容控制[J]. 电机与控制学报, 2024, 28(4): 167-176.
MA J D, SUN H F, TAN C, et al. Non-singular sliding mode containment control of ship fixed time under dynamic constraints[J]. Electric Machines and Control, 2024, 28(4): 167-176.
[8] 宁君, 张军, 李伟. 预设性能下的输出受限船舶航向切换容错控制[J]. 计算机仿真, 2024, 41(1): 385-389+451.
NING J, ZHANG J, LI W. Output limited ship course switching fault tolerant control with prescribed performance[J]. Computer Simulation, 2024, 41(1): 385-389+451.