针对水下航行器外壳上开口的声隐蔽性问题,采用基于有限元的声固耦合求解模型结合点声源激励策略,获取水下弹性开口空腔声模态频率的数值仿真方法。以典型空腔为验证模型,分析其水下声场特性,以测点声压级峰值频率表征空腔声模态频率,将声模态频率仿真解与理论解进行对比,结果表明,刚性封闭矩形空腔前十阶声模态频率最大相对误差为0.12%,不同弹性底板厚度的Helmholtz共振器一阶声模态频率最大相对误差为1.81%,验证了基于有限元的声固耦合求解模型结合点声源激励,可作为水下弹性开口空腔声模态频率的数值预报方法。以某水下弹性开口空腔为对象,采用声固耦合有限元数值计算模型,分析仿真计算参数的收敛性,预报得到水下弹性开口空腔声模态频率。
To address the acoustic concealment issue of openings on the outer shell of underwater vehicles, the numerical simulation method of acoustic modal frequency of underwater elastic opening cavity is obtained by using the finite element-based acoustic-solid coupling solution model combined with the point source excitation strategy, the typical cavity is used as the verification model to analyze the characteristics of the underwater sound field. The peak frequency of the sound pressure level of the measuring point is used to characterize the acoustic mode frequency of the cavity, and the simulation solution of the acoustic mode frequency is compared with the theoretical solution. The results show that the maximum relative error of the first ten-order acoustic mode frequency of the rigid closed rectangular cavity is 0.12%, and the maximum relative error of the first-order acoustic mode frequency of the Helmholtz resonator with different elastic floor thickness is 1.81%. It is verified that the acoustic-solid coupling solution model based on finite element combined with point sound source excitation can be used as a numerical prediction method for the acoustic mode frequency of the underwater elastic open cavity. Taking an underwater elastic opening cavity as the object, the convergence of the simulation parameters is analyzed by using the acoustic-solid coupling finite element numerical calculation model, and the acoustic modal frequency of the underwater elastic opening cavity is predicted.
2025,47(23): 78-84 收稿日期:2025-3-10
DOI:10.3404/j.issn.1672-7649.2025.23.012
分类号:U674
作者简介:徐飘(1999-),女,硕士研究生,研究方向为水下结构噪声
参考文献:
[1] 杨润佳. 消声器声—固耦合数值仿真与特性分析[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[2] LYON R H. Noise reduction of rectangular enclosures with one flexible wall[J]. The Journal of the Acoustical Society of America, 1963, 35(11): 1791–1797.
[3] GLADWELL G M L. On the reconstruction of a damped vibrating system from two complex spectra, PART1?:theory[J]. Journal of Sound and Vibration, 2001, 240(2): 203–217.
[4] GLADWELL G M. L, G ZIMMERMANN. On energy and complementary energy formulations of acoustic and structural vibration problems[J]. Journal of Sound and Vibration, 1966, 3(3): 233-241.
[5] 杜敬涛. 任意边界条件下结构振动、封闭声场及其耦合系统建模方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
[6] 姚昊萍, 张建润, 陈南, 等. 考虑边界条件的弹性长方体封闭结构腔辐射声场分析[J]. 机械工程学报, 2007, 43(4): 163-167, 172.
YAO H P, ZHANG J R, CHEN N, et al. Sound field analysis of cavity radiation of closed structure of elastic cuboid considering boundary conditions[J]. Chinese Journal of Mechanical Engineering, 2007, 43(4): 163-167,172.
[7] 田红莉, 刘志峰, 张乃龙, 等. 箱体结构的声固耦合有限元分析[J]. 机械设计与制造, 2007(7): 24-26
TIAN H L, LIU Z F, ZHANG N L, et al. Acoustic-solid coupling finite element analysis of box structure[J]. Mechanical Design and Manufacture, 2007(7): 24-26
[8] 徐娜, 魏子天, 李敏, 等. 基于水下结构声辐射特性的水下航行器声隐蔽性分析[J]. 舰船科学技术, 2024, 46(23): 83-87
XU N, WEI Z T, LI M et al. Analysis of acoustic concealment of underwater vehicles based on acoustic radiation characteristics of underwater structures[J]. Ship Science and Technology, 2024, 46(23): 83-87
[9] 赵晓腾. 基于FEM-IFEM耦合方法的水下航行器声辐射/声散射特性分析与优化[D]. 武汉: 华中科技大学, 2020.
[10] 何少康. 水下典型结构声辐射快速预报及优化[D]. 武汉: 华中科技大学, 2021.
[11] BETTESS P. Infinite elements[J]. International Journal for Numerical Methods in Engineering, 1977, 11(1): 53–64.
[12] ZIENKIEWICZ O C, EMSON C, BETTESS P. A novel boundary infinite element[J]. International Journal for Numerical Methods in Engineering, 1983, 19(3): 393-404.
[13] 缪硕, 石敏, 任春雨. 外域声场计算中的无限元方法[J]. 计算机辅助工程, 2022, 31(2): 57-62
MIAO S, SHI M, REN C Y. Infinite element method in the calculation of external acoustic field[J]. Computer Aided Engineering, 2022, 31(2): 57-62
[14] 李丽君, 刚宪约, 李红艳, 等. 开口薄壁结构声固耦合问题的计算方法[J]. 机械设计, 2011, 28(2): 12-15
LI L J, GANG X Y, LI H Y, et al. Calculation method of acoustic-structural coupling problem of open thin-walled structures[J]. Mechanical design, 2011, 28(2): 12-15
[15] 桑永杰, 蓝宇, 丁玥文. Helmholtz水声换能器弹性壁液腔谐振频率研究[J]. 物理学报, 2016, 65(2): 186-193
[16] 宋睿领. Helmholtz复合谐振腔水下声学特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[17] 柯李菊. 水下开口弹性空腔声模态特性分析研究[D]. 武汉: 华中科技大学, 2022.
[18] 陈钊. 水下开口弹性空腔振动及声辐射特性研究[D]. 武汉: 华中科技大学, 2020.
[19] 赵成宇. 弹性开口空腔声振耦合特性研究[D]. 北京: 中国舰船研究院, 2023.
[20] 熊晨熙, 吴江海, 吴健. 声固耦合有限元-无限元建模参数选取原则研究[C]//第十八届船舶水下噪声学术讨论会论文集. 中国云南昆明, 2021.
XIONG C X, WU J H, WU J. Research on the selection principle of acoustic-structural coupled finite element-infinite element modeling parameters[C]// Proceedings of the 18th Symposium on Underwater Noise of Ships. Kunming, China 2021.
[21] 李录贤, 国松直, 王爱琴. 无限元方法及其应用[J]. 力学进展, 2007, 37(2): 161-174.
LI L X, GUO S Z, WANG A Q. Infinite element method and its applications[J]. Advances in Mechanics, 2007, 37(2): 161-174.