针对船体外板成形检测中传统手工卡样板方法效率低下、精度不足的问题,本文提出基于激光扫描检测系统的数字化解决方案。通过引入六自由度机械臂与高精度线激光传感器构建三维检测平台,创新性地构建了包含数据采集、点云配准、曲面重构与偏差分析的数字样板方法框架。提出融合边界几何信息的点云不穿透配准算法;基于改进的Delaunay三角剖分算法重构曲面并提取数字化样板。实验验证表明,该方法在帆形板检测中达到1 mm以内的精度,单次检测时间缩短至10 min以内,相较传统方法检测效率提升75%以上。
In order to solve the problems of low efficiency and insufficient accuracy of the traditional manual template method in the forming detection of hull outer plates, a digital solution based on laser scanning detection system was proposed. By introducing a six-degree-of-freedom robotic arm and a high-precision line laser sensor to build a three-dimensional detection platform, a digital template method framework including data acquisition, point cloud registration, surface reconstruction and deviation analysis was innovatively constructed. A point cloud non-penetration registration algorithm fused with boundary geometric information was proposed. Based on the improved Delaunay triangulation algorithm, the surface is reconstructed and the digital template is extracted. Experimental verification shows that the method achieves an accuracy of less than 1 mm in the detection of outer plates, shortens the single detection time to less than 10 minutes, improves the detection efficiency by more than 75% compared with the traditional method.
2025,47(23): 85-91 收稿日期:2025-3-17
DOI:10.3404/j.issn.1672-7649.2025.23.013
分类号:U671.3
作者简介:王柏琛(1999-),男,硕士研究生,研究方向为船舶建造工艺
参考文献:
[1] 王顺, 王一冰, 汪骥, 等. 船舶复杂曲板水火成形难度评价系统的开发及应用[J]. 船舶工程, 2023, 45(7): 143-147.
WANG S, WANG Y B, WANG J, et al. Development and application of line heating forming difficulty evaluation system for curved hull plate[J]. Ship Engineering, 2023, 45(7): 143–147.
[2] HIEKATA K , MITSUYUKI T , OKADA K , et al. Development of curvature gap estimation system for deciding thermal forming instructions of ship curved shell plates using laser scanner[J]. International Journal of Automation Technology, 2018, 12(3): 339-347.
[3] 史一帆, 汪骥, 张嘉昊, 等. 基于深度学习的船体曲板多视角三维重建方法[J]. 船舶工程, 2023, 45(10): 134-141.
SHI Y F, WANG J, ZHANG J H, et al. Multi-view 3D reconstruction of curved plate based on deep learning[J]. Ship Engineering, 2023, 45(10): 134-141.
[4] 赵亮, 于洋, 俞峰, 等. 船体曲板的双目视觉测量方法[J]. 造船技术, 2021, 49(2): 50-55.
ZHAO L, YU Y, YU F, et al. Binocular vision measurement method of curved hull plate[J]. Shipbuilding Technology, 2021, 49(2): 50-55.
[5] 时丹. 基于双目视觉的水火弯板三维测量技术研究[D]. 镇江: 江苏科技大学, 2023.
[6] LE–DINH T , TRAN H . Aspects in vessel system offsets survey using 3-D laser scanning system[J]. IOP Publishing Ltd, 2025.
[7] 毛成林, 于瑞强, 宋爱国. 一种结合TCP标定的深度相机手眼标定方法[J]. 仪器仪表学报, 2023, 44(3): 280-286.
MAO C L, YU R Q, SONG A G. A depth camera hand-eye calibration method combined with TCP calibration[J]. Journal of Instrumentation, 2023, 44(3): 280-286.
[8] MONJI–AZAD S , KINZ M , MNNEl D , et al. Robust–DefReg: a robust coarse to fine non–rigid point cloud registration method based on graph convolutional neural networks[J]. Measurement Science and Technology, 2025, 36(1): 015426.
[9] ZHAO F , HUANG H , HU W. An optimized hierarchical point cloud registration algorithm[J]. Multimedia Systems, 2025, 31(1): 1–13.
[10] SHEN H Q , SON S H , KIM Y M , et al. Forming information calculation algorithm of 3–D template for evaluation of curved hull plates[J]. Procedia Cirp, 2017, 62: 411–416.
[11] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中国造船质量标准: GB/T34000—2016[S]. 2016.