由于水下无人潜航器(Unmanned Underwater Vehicle, UUV)电池容量的限制,UUV集群难以满足某些大范围、长航时的任务需求,利用动基座回收技术,使用运载平台对UUV集群进行回收再布放可有效延长UUV的作业时间。针对运载平台对UUV集群的回收问题,建立UUV集群回收任务规划模型,提出一种改进的粒子群算法对UUV集群回收路线进行规划,使UUV集群整体回收时间最短。仿真结果表明,所提方法可有效解决UUV集群回收任务规划问题。
Due to the limited battery capacity of UUV, UUV swarms are difficult to meet the task requirements of large-scale and long-duration missions. By using the dynamic base recovery technology, the deployment and recovery of UUVs can be achieved using a carrier platform, effectively extending the operational time of UUVs. This paper addresses the problem of retrieving UUVs in a swarm for a carrier platform, and established a task planning model for retrieving the UUV swarm. It used an improved Particle Swarm Optimization (PSO) algorithm to plan the retrieval locations of the UUV swarm, aiming to minimize the overall retrieval time of the UUV swarm. Simulation results show that the method proposed in this paper can effectively solve the task planning problem of retrieving the UUV swarm.
2025,47(23): 92-97 收稿日期:2025-2-8
DOI:10.3404/j.issn.1672-7649.2025.23.014
分类号:U674.94;TJ630.1
基金项目:国防科工局基础科研资助项目(JCKY2021206B086)
作者简介:曹亚浩(1997-),男,硕士研究生,研究方向为水下有人无人协同
参考文献:
[1] 孙彧, 潘宣宏, 王幸军, 等. 无人潜航器装备技术发展及作战运用研究[J]. 舰船科学技术, 2023, 45(21): 104-109.
SUN Y, PAN X H, et al. Research on the development of unmanned underwater vehicle equipment technology and its combat application[J]. Ship Science and Technology, 2023, 45(21): 104-109.
[2] 孟令帅, 李明烁, 林扬, 等. 自主水下机器人布放回收技术综述[J]. 无人系统技术, 2024, 7(1): 1-19.
MENG L S, LI M S. LIN Y, et al. Review on deployment and recovery technologies for autonomous underwater vehicles[J]. Unmanned Systems Technology, 2024, 7(1): 1-19.
[3] 张伟, 伍文华, 滕延斌, 等. 约束条件下基于满意模型预测控制的动基座水下无人航行器对接控制[J]. 哈尔滨工程大学学报, 2022, 43(1): 108-118.
ZHANG W, WU W H, TENG Y B, et al. Docking control of dynamic base underwater unmanned vehicles based on satisfactory model predictive control under constrained conditions[J]. Journal of Harbin Engineering University, 2022, 43(1): 108-118.
[4] BREIVIK M, LOBERG J E. A virtual target-based underway docking procedure for unmanned surface vehicles[J]. IFAC Proceedings Volumes, 2011, 44(1): 13630-13635.
[5] 赵鹏程, 宋保维, 毛昭勇, 等. 基于改进的复合自适应遗传算法的UUV水下回收路径规划[J]. 兵工学报, 2022, 43(10): 2598-2608.
ZHAO P C, SONG B W, MAO S Y, et al. Underwater recovery path planning of unmanned underwater vehicle based on an improved composite adaptive genetic algorithm[J]. Acta Armamentarii, 2022, 43(10): 2598-2608.
[6] 廉成斌, 杨亭鹏, 李磊, 等. UUV水下回收路径规划方法研究[J]. 舰船科学技术, 2021, 43(S1): 42-47.
LIAN C B, YANG T P, LI L, et al. Research of unmanned underwater vehicle underwater recovery path planning[J]. Ship Science and Technology, 2021, 43(S1): 42-47.
[7] 陈秋莲, 郑以君, 蒋环宇, 等. 基于神经网络改进粒子群算法的动态路径规划[J]. 华中科技大学学报(自然科学版), 2021, 49(2): 51-55.
CHEN Q L, ZHENG Y J, JIANG H Y, et al. Dynamic path planning based on neural network-improved particle swarm optimization algorithm[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(2): 51-55.
[8] YANG S M, SHAN Z, CAO J, et al. Path planning of UAV base station based on deep reinforcement learning[J]. Procedia Computer Science, 2022, 202: 89-104.
[9] 胡守一. UUV水下回收自抗扰控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[10] 滕延斌. 基于模型预测控制的动基座UUV回收控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
[11] LIU Y B, QI N M, et al. Cooperative path planning for aerial recovery of a uav swarm using genetic algorithm and homotopic approach[J]. IEEE Transactions on Vehicular Technology, 2020, 69: 3505-3509.
[12] 刘永孛. 集群无人机空基回收任务规划方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
[13] 董校成, 于浩淼, 郭晨. 能耗与时间约束下的UUV三维路径规划[J]. 大连海事大学学报, 2022, 48(2): 11-20.
DONG X C, YU H M, GUO C. Research on UUV three-dimensional path planning under energy consumption and time constraints[J]. Journal of Dalian Maritime University, 2022, 48(2): 11-20.
[14] 王龙宝, 栾茵琪, 徐亮, 等. 基于动态簇粒子群优化的无人机集群路径规划方法[J]. 计算机应用, 2023, 43(12): 3816-3823.
WANG L B, LUAN Y Q, XU L, et al. UAV swarm path planning method based on dynamic-cluster particle swarm optimization[J]. Journal of Computer Applications, 2023, 43(12): 3816-3823.
[15] JOHANNES J, ADRIAN B, STEFAN F.R. Directed particle swarm optimization with Gaussian-process-based function forecasting[J]. European Journal of Operational Research. 2021, 294(1): 157-169.