为更好地利用海底悬浮坞站促进自主式水下航行器(AUV)的快速充电和数据传输,本文针对AUV与单点系泊式坞站对接碰撞问题展开研究。首先,进行AUV和悬浮坞站相关受力和碰撞参数的分析,基于Adams/Matlab联合仿真平台,建立水下对接仿真模型;然后,研究AUV的偏距、偏角、初始速度等参数对整个对接过程的影响;最后,对于碰撞过程中姿态偏离较大问题,设计了姿态稳定控制器,并完成了控制仿真。仿真结果表明,AUV在满足舵效前提下,以5°左右的偏角、较小的偏距及较小初始速度有利于对接回收;控制器能够及时调整碰撞后AUV的姿态,有效降低碰撞风险,缩短回收时间,提高对接效率。
In order to better utilize seabed floating docking stations to promote rapid charging and data transmission of autonomous underwater vehicles (AUV), this paper focuses on the docking collision problem between AUV and single point moored docks. The relevant force and collision parameters of the AUV and the floating dock station were analyzed, and the underwater docking simulation model was built based on the Adams/Matlab joint simulation platform. Based on the proposed model, the influences of five parameters on the entire docking process were studied, including the offset, deflection angle, initial velocity of the AUV. To address the issue of significant attitude deviation during the docking collision process, a sliding mode attitude stabilization controller was designed and the control simulation was completed. The simulation results show that a deflection Angle of about 5°, a smaller deflection distance and a smaller initial speed under the premise of meeting the rudder efficiency can contribute to successful docking process. The controller can adjust the AUV attitude in real time, effectively reduce collision risk, shorten recovery time and improve docking efficiency.
2025,47(23): 106-112 收稿日期:2025-3-28
DOI:10.3404/j.issn.1672-7649.2025.23.016
分类号:U662.2;P715
作者简介:高思维(2000-),女,硕士研究生,研究方向为智能无人系统
参考文献:
[1] WU L H, LI Y P, SU S J, et al. Hydrodynamic analysis of AUV underwater docking with a cone-shaped dock under ocean currents[J]. Ocean Engineering, 2014, 85(15): 110-126.
[2] GUO J, TAN H, LIU J, et al. Numerical simulation and analysis of UUV docking with a seabed moored floating dock[J]. Ocean Engineering, 2024, 313(3): 119528.
[3] PAGE B R, MAHMOUDIAN N. Simulation-driven optimization of underwater docking station design[J]. IEEE Journal of Oceanic Engineering, 2019, 45(2): 1-10.
[4] BELLINGHAM J G. Autonomous underwater vehicle docking[J]. Springer International Publishing, 2016: 387-406.
[5] MCEWEN S R, HOBSON W B, MCBRIDE L, et al. Docking control system for a 54-cm-diameter (21-in) AUV[J]. IEEE Journal of Oceanic Engineering, 2008, 33(4): 550-562.
[6] 李开飞. AUV水下对接关键技术及对接碰撞问题研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[7] 辛传龙, 郑荣, 杨博. AUV水下对接系统设计与接驳控制方案研究[J]. 工程设计学报, 2021, 28(5): 633-645.
XIN C L, ZHENG R, YANG B. Research on the design and connection control scheme of AUV underwater docking system[J]. Chinese Journal of Engineering Design, 2021, 28(5): 633-645.
[8] 谭桦, 辛传龙, 郑荣. AUV接驳系统水下系泊悬浮运动建模与分析[J]. 舰船科学技术, 2024, 46(16): 90-101.
TAN H, XIN C L, ZHENG R. Dynamic modeling and analysis of underwater mooring levitation motion of AUV docking system[J]. Ship Science and Technology, 2024, 46(16): 90-101.
[9] 辛传龙, 郑荣, 任福琳, 等. AUV接驳装置悬浮平衡分析与配重优化设计[J]. 工程设计学报, 2022, 29(2): 176-186.
XIN C L, ZHENG R, REN F L, et al. Suspension balance analysis and counterweight optimization design of AUV docking device[J]. Chinese Journal of Engineering Design, 2022, 29(2): 176-186.
[10] ZHENG R, TAN H, LV Z, et al. Dynamic characteristics of deep-sea single-point mooring levitation docking system[J]. Ocean Engineering, 2024, 301: 117536.
[11] PALOMERAS N, VALLICROSA G, MALLIOS A, et al. AUV homing and docking for remote operations[J]. Ocean Engineering, 2018, 154(15): 106-120.
[12] ZHANG T, LI D, YANG C. Study on impact process of AUV underwater docking with a cone-shaped dock[J]. Ocean Engineering, 2017, 301: 176-187.
[13] 张医博, 唐元贵, 要振江. 便携式AUV水下对接过程中的碰撞分析与罩式对接平台优化设计[J]. 海洋技术学报, 2017, 36(5): 27-31.
ZHANG Y B, TANG Y G, YAO Z J. Collision analysis during the underwater docking process of portable AUVs and optimization design of the hood docking platform[J]. Journal of Ocean Technology, 2017, 36(5): 27-31.
[14] 潘薇, 张永林, 刘妮. 水下机器人动态对接中的碰撞与稳定控制[J]. 舰船科学技术, 2023, 45(2): 86-90.
PAN W, ZHANG Y L, LIU N. Collision and stability control in dynamic docking of autonomous underwater vehicle[J]. Ship Science and Technology, 2023, 45(2): 86-90.
[15] DAVIDSON J, RINGWOOD V J, KOFOED P J. Mathematical modelling of mooring systems for wave energy converters—a review[J]. Energies, 2017, 10(5): 666.
[16] 关英杰, 崔庆佳, 徐彪, 等. 基于CFD的槽道推进器对AUV水动力性能的影响研究[J]. 控制与信息技术, 2023(6): 65-71.
GUAN Y J, CUI Q J, XU B, et al. Investigation of the impact of ducted propellers on AUV hydrodynamic performance based on CFD[J]. Control and Information Technology, 2023(6): 65-71.
[17] 王芳, 万磊, 李晔, 等. 欠驱动AUV的运动控制技术综述[J]. 中国造船, 2010, 51(2): 227-241.
WANG F, WAN L, LI Y, et al. Overview of motion control technology for underactuated AUV[J]. Shipbuilding of China, 2010, 51(2): 227-241.