为提高矢量推进系统在复杂工况下的运动控制精度,本研究通过机械动力学建模与仿真分析,揭示了推力角动态变化对推进系统推力特性的耦合作用机制。首先,建立了矢量推进器机械结构的坐标系,通过计算变向机构拉杆的长度参数,采用刚度耦合分析方法,揭示了整体刚度随推力角变化的规律。随后,研究了推力角变化对有效推力的影响规律,构建了推进器的推力模型。最后,通过试验验证了理论模型的准确性。试验结果表明,当推力角发生变化时,推力模型与理论模型之间存在偏差,且该偏差随转速的升高而增大,从而影响推进器的正常使用。因此,在矢量推进器的控制与推进系统设计中,必须充分考虑推力角变化对系统性能的影响,以提高系统的运动精度和稳定性。
To improve the motion control accuracy of vector propulsion systems under complex working conditions, this study employs mechanical dynamics modeling and simulation analysis to reveal the coupling mechanism between dynamic thrust-angle variations and the thrust characteristics of the propulsion system.Firstly, the coordinate system of the mechanical structure of the vector thruster is established, and the overall stiffness variation with the thrust angle is revealed by calculating the length parameter of the vector thruster tie rod and adopting the stiffness coupling analysis method. Subsequently, the law of the influence of the change of thrust angle on the effective thrust was investigated, and the thrust model of the thruster was constructed. Finally, the accuracy of the theoretical model is verified by experiment. The experimental results indicate that when the thrust angle changes, there is a deviation between the thrust model and the theoretical model, and this deviation increases with the rise in rotational speed, thereby affecting the normal operation of the thruster. Therefore, in the control and propulsion system design of vector thrusters, the impact of thrust angle variations on system performance must be fully considered to enhance the motion accuracy and stability of the system.
2025,47(23): 125-129 收稿日期:2025-3-27
DOI:10.3404/j.issn.1672-7649.2025.23.019
分类号:U664.3
基金项目:广东省重点建设学科科研能力提升项目(2024ZDJS058);国家级大学生创新训练计划项目(202411106004);广州航海学院智慧课堂项目(XJ20250102)
作者简介:李宗航(2004-),男,研究方向为轮机工程
参考文献:
[1] 魏东杰. 水下机器人并联式矢量推进器设计与研究[D]. 天津: 天津大学, 2014.
[2] 曹永军, 张云亮, 李丽丽, 等. AUV矢量推进器的设计[J]. 自动化与信息工程, 2017, 38(4): 1-7.
[3] WU Z, JING X, BIAN J, et al. Vibration isolation by exploring bio-inspired structural nonlinearity[J]. Bioinspiration & biomimetics' 2015: 056015.
[4] ZHU H, LIN L, YU C, et al. The design and application of a vectored thruster for a negative lift-shaped AUV[J]. Actuators, 2024, 13(6): 228-228.
[5] 王瑞, 吕建良, 钟诗胜, 等. 一种AUV并联型矢量推进机构的姿态控制算法[J]. 哈尔滨工业大学学报, 2019, 51(4): 1-5.
[6] JIANG X F, YANG F C, SHI S. Design and full-link trajectory tracking control of underwater snake robot with vector thrusters under strong time-varying disturbances[J]. Ocean Engineering, 2022, 266(12): 113012.
[7] 陈修宇, 朱兴华. 基于并联机构的AUV矢量推进器研究[J]. 舰船科学技术, 2024, 46(7): 74-80.
CHEN X Y, ZHU X H. Investigation of vector thrust based on parallel mechanism for AUV[J]. Ship Science and Technology, 2024, 46(7): 74-80.
[8] 耿君毅. 水下无人航行器矢量推进系统设计与分析[D]. 长沙: 国防科学技术大学, 2016.
[9] 潘存云, 郭克希, 杨俊, 等. 水下矢量推进器的动力学分析[J]. 机械设计与研究, 2010, 26(5): 20-23.
[10] 彭嗣鹏. 复杂海况下船载高速空压机轴系动力学特性研究[D]. 大连: 大连海事大学, 2021.