为改善传统涡轮增压的不足,对某船用V型柴油机增压系统进行设计改进。提出了利用两增压器与三增压器相继增压的2种方案,通过GT-Power 分别对其进行推进特性下的仿真计算,研究柴油机的性能变化及控制策略,对2种增压方案进行对比。结果表明:在此切换策略下三增压器方案油耗要低于两增压器方案,最低可减少12.6 g/kWh,约下降6.1% 。且三增压器方案低工况1 TC运行稳定,满足柴油机低负荷性能要求。研究结果认为三增压器相继增压方案可以实现柴油机全工况良好匹配,经济性更好。为柴油机增压系统优化设计提供一定思路参考。
In order to improve the shortcomings of traditional turbocharging, this study proposes design improvements for the turbocharging system of a marine V-type diesel engine. Two sequential turbocharging configurations were investigated: a dual-turbocharger system and a triple-turbocharger system. GT-Power simulation software was employed to conduct performance simulations under propulsion operating conditions, with comparative analysis focusing on engine performance variations and control strategies. Under this strategy, the triple-turbo configuration exhibits superior fuel economy with a maximum reduction of 12.6 g/kWh (approximately 6.1%) compared to the dual-turbo system. Furthermore, the triple-turbo system maintains stable 1 TC operation under low-load conditions, meeting the performance requirements of the diesel engine. The study concludes that the triple-turbo sequential charging system achieves optimal full-load matching capabilities and enhanced fuel economy. This research provides valuable insights for the optimization design of diesel engine turbocharging systems.
2025,47(23): 130-135 收稿日期:2025-4-5
DOI:10.3404/j.issn.1672-7649.2025.23.020
分类号:U664
作者简介:王政远(1998-),男,硕士研究生,研究方向为内燃机增压与控制
参考文献:
[1] 黄大煜. 柴油机节能减排技术的研究与应用[J]. 内燃机与配件, 2024(19): 129-131.
HUANG D Y. Research and application of energy saving and emission reduction technology for diesel engine[J]. Internal Combustion Engine & Parts, 2024(19): 129-131.
[2] 黄立, 陈晓轩, 李先南, 等. 船用柴油机涡轮增压技术发展现状[J]. 推进技术, 2020, 41(11): 2438-2449.
HUANG L, CHEN X X, LI X N, et al. Development status of marine diesel engine turbocharging technology[J]. Journal of Propulsion Technology, 2020, 41(11): 2438-2449.
[3] ZHANG H Y, SHI L, DENG K Y, et al. Experiment investigation on the performance and regulation rule of two-stage turbocharged diesel engine for various altitudes operation[J]. Energy, 2020, 192: 116653.
[4] 任自中. 柴油机相继增压系统的理论与试验研究[J]. 内燃机工程, 2001(1): 32-37.
REN Z Z. Theoretical and experimental study on the sequential turbocharging system of diesel engines[J]. Chinese Internal Combustion Engine Engineering, 2001(1): 32-37.
[5] JACOBS T J, JAGMIN C, WILLIAMSON W J, et al. Performance and emission enhancements of a variable geometry turbocharger on a heavy-duty diesel engine[J]. International Journal of Heavy Vehicle Systems, 2008, 15(2/3/4): 170.
[6] 张克松, 王桂华, 李国祥. 电辅助涡轮增压技术的发展综述[J]. 内燃机与动力装置, 2008(2): 31-35,40.
ZHANG K S, WANG G H, LI G X. The development of electrically assisted turbocharger[J]. Internal Combustion Engine & Powerplant, 2008(2): 31-35,40.
[7] 石凡, 王银燕, 冯永明. 船用高速柴油机多台增压器相继增压计算分析[J]. 船舶工程, 2007(2): 1-5.
SHI F, WANG Y Y, FENG Y M. Computation and analysis of multi-turbocharger sequential turbo-charging of a marine high-speed diesel engine[J]. Ship Engineering, 2007(2): 1-5.
[8] 王银燕, 高维成, 赵建平, 等. 应用MPC-相继增压系统改善船用柴油机低负荷性能的研究[J]. 内燃机学报, 1999(1): 16-20.
WANG Y Y, GAO W C, ZHAO J P. A study of utilizing MPC-sequential turbocharging system for improving part-load performance of a marine diesel engine[J]. Transactions of CSICE, 1999(1): 16-20.
[9] HERRING P. Sequential turbocharging of the MTU 1163 engine[J]. Transactions-Institute of Marine Engineers, 1988, 100(3): 145-156.
[10] WINTRUFF I, BVCHELER O, RALL H, et al. The new MTU series 4000 rail engines certified for EU IIIB[J]. Mtz Worldwide, 2011, 72(5): 30-34.
[11] FREITAG M, TEETZ C. MTU 8000系列新型柴油机[J]. 国外内燃机车, 2001(4): 3-9.
FREITAG M, TEETZ C. New MTU 8000 series diesel engines[J]. Foreign Railway Locomotive and Motor Car, 2001(4): 3-9.
[12] 寒林. DF200型内燃机车用MTU12V396TE14型柴油机[J]. 国外内燃机车, 1993(8): 1-5.
HAN L. MTU12V396TE14 Diesel engine for DF200 internal combustion locomotive[J]. Foreign Railway Locomotive and Motor Car, 1993(8): 1-5.
[13] DZIEDZIK P, DANILECKI K. The concept of determining the control function of turbochargers in sequential turbo-charging[J]. IOP Conference Series: Materials Science and Engineering, 2018, 421: 42017.
[14] 黄建华, 王银燕, 王贺春. 船用V型高速柴油机相继增压计算分析[J]. 船舶工程, 2005(2): 5-9.
HUANG J H, WANG Y Y, WANG H C. Calculation and analysis of a marine V type high-speed diesel engine using STC[J]. Ship Engineering, 2005(2): 5-9.
[15] ZHANG P Q, DU J W, WANG Y Y. Grey theory approach to sequential turbocharged diesel engine[J]. Applied Mechanics and Materials, 2007, 10–12: 934–938.
[16] 何清林, 王贺春, 王银燕, 等. 船用V型柴油机大小涡轮增压器相继增压切换过程试验研究[J]. 内燃机工程, 2013, 34(2): 12-17,23.
HE Q L, WANG H C, WANG Y Y. Experimental research on switching process of sequential turbocharging system with unequal-size turbochargers for V-type marine diesel engine[J]. Chinese Internal Combustion Engine Engineering, 2013, 34(2): 12-17,23.
[17] SHI M W, WANG H C, YANG C L, et al. Experimental research on the matching characteristics of the compound VGT-STC System with a V-type diesel engine[J]. Machines, 2022, 10(9): 788.
[18] 李先南, 胡登, 王贺春, 等. 柴油机两级相继增压系统设计与匹配试验研究[J]. 西南交通大学学报, 2023, 58(2): 314-321+331.
LI X N, HU D, WANG H C, et al. Design and matching test of two-stage sequential supercharging system for diesel engines[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 314-321+331.
[19] LENG L, QIU H J, LI X N, et al. Effects on the transient energy distribution of turbocharging mode switching for marine diesel engines[J]. Energy, 2022, 249: 123746.
[20] QIU H J, LENG L, SONG Y P, et al. Experimental investigation of combustion characteristics analysis and optimization during the turbocharging mode switching process of diesel engine with advanced turbocharging system[J]. Applied Thermal Engineering, 2023, 223: 119992.
[21] 秦伟, 张洋洋, 侯晓良, 等. 船用柴油机相继增压系统进气均匀性提升仿真设计[J]. 内燃机, 2024, 40(2): 22-28.
QIN W, ZHANG Y Y, HOU X L, et al. Simulation design of air intake uniformity improvement for marine STC diesel engine[J]. Internal Combustion Engines, 2024, 40(2): 22-28.