针对传统八格角反射器低俯仰角度(0°~10°)下空间声散射特征稳定性不足问题,通过将局部二面角结构与正八格角反射器组合,提出一种异型八格角反射器结构设计。并采用箱线图四分位距统计分析方法对其目标强度空间分布进行分析。仿真表明:优化后的异型八格角反射器能够在低俯仰角度范围内增强声散射目标强度,并且具有较好的空间分布稳定性。进一步开展了异型角反射器湖上声散射试验,试验与仿真结果吻合较好。设计的结构有效地提高了角反射器空间声散射的稳定性,为水下角反射器的设计提供了理论指导。
To address the instability in the spatial acoustic scattering characteristics of traditional octahedral corner reflectors (OCRs) at low pitch angles (0° to 10°), this study proposes a modified octahedral corner reflector (MOCR) design that combines locally modified dihedral structures with the conventional OCR configuration. The spatial distribution of target strength (TS) was analyzed using a boxplot-based interquartile range (IQR) statistical method. Simulation results demonstrate that the optimized MOCR effectively enhances the TS within the low pitch angle range while exhibiting improved stability in its spatial distribution. To further validate the design, lake-based acoustic scattering experiments were conducted, with results showing good agreement with the simulation data. The proposed structure effectively enhances the spatial stability of acoustic scattering from corner reflectors, offering theoretical guidance for the design of underwater corner reflectors.
2025,47(23): 136-140 收稿日期:2025-3-17
DOI:10.3404/j.issn.1672-7649.2025.23.021
分类号:U666.7
基金项目:国家自然科学基金资助项目(52201397);船舶振动噪声重点实验室开放基金(6142204230709,6142204240202);湖南省自然科学基金面上项目(2023JJ60544)
作者简介:许聪(2000-),男,硕士研究生,研究方向为水中目标声散射
参考文献:
[1] HILLERY H V. Triplane and corner reflector targets for underwater sound[J]. The Journal of the Acoustical Society of America, 1960, 32(S11): 1520–1520.
[2] CHEN W J, SUN H. Study on the acoustic backscattering characteristics of underwater corner reflector[J]. Journal of Information & Computational Science, 2015, 12(1): 1–7.
[3] 刘妍, 彭子龙, 杜佳曼, 等. 水下超表面角反射器声散射调控机理研究[J]. 兵工学报, 2023, 44(10): 3146-3155.
LIU Y, PENG Z L, DU J M, et al. Acoustic scattering regulation mechanism of underwater metasurface corner reflector[J]. Acta Armamentarii, 2023, 44(10): 3146–3155.
[4] DU J M, PENG Z L, GE L L, et al. Modulation mechanism of acoustic scattering in underwater corner reflectors with acoustic metasurfaces[J]. Archives of Acoustics, 2023, 48(4): 465–473.
[5] 陈鑫, 罗祎, 李爱华. 水下弹性角反射器声散射特性[J]. 兵工学报, 2018, 39(11): 2236-2242.
CHEN X, LUO Y, LI A H. Acoustic scattering characteristics of underwater elastic corner reflectors[J]. Acta Armamentarii, 2018, 39(11): 2236–2242.
[6] 罗祎, 张景卓, 褚子超, 吴浩然. 水下多格弹性角反射体声反射特性及强度增强方法[J]. 兵工学报, 2024, 45(6): 2025-2033.
LUO Y, ZHANG J Z, CHU Z C, et al. Acoustic reflection characteristics and strength enhancement method of underwater multigrid elastic corner reflector[J]. Acta Armamentarii, 2024, 45(6): 2025–2033.
[7] LUO Y, CHEN X, XIAO D, et al. An air cavity method for increasing the underwater acoustic targets strength of corner reflector[J]. Defence Technology, 2020, 16(2): 493–501.
[8] 罗祎, 何华云, 陈鑫. 基于角反射器的诱扫主动攻击水雷方法[J]. 指挥控制与仿真, 2016, 38(05): 112-115.
LUO Y, HE H Y, CHEN X. Method of cheating moving mine based on corner reflector[J]. Command Control & Simulation, 2016, 38(05): 112–115.
[9] CHU Z C, LUO Y, HU J W, et al. Acoustic scattering characteristics of underwater one-dimensional corner reflector array[C]//2023 International Conference on Networking, Informatics and Computing (ICNETIC). IEEE, 2023: 48–53.
[10] 柴鹏程, 陈昌雄, 刘妍, 等. 水下角反射组合体声散射特性[J]. 中国舰船研究, 2023, 18(5): 83-91.
CHAI P C, CHEN C X, LIU Y, et al. Acoustic scattering properties of underwater corner reflector complexes[J]. Chinese Journal of Ship Research, 2023, 18(5): 83–91.
[11] HAN L J, SONG H, CHEN C X, et al. Research on the acoustic scattering characteristics of multi-sections conning tower geometries in monostatic configuration[J]. Archives of Acoustics, 2022: 307-317-307–317.
[12] 郑国垠, 范军, 汤渭霖. 考虑遮挡和二次散射的修正板块元算法[J]. 声学学报, 2011, 36(4): 377-383
ZHENG G Y, FAN J, TANG W L. A modified planar elements method considering occlusion and secondary scattering[J]. Acta Acustica, 2011, 36(4): 377–383.
[13] KRZYWINSKI M, ALTMAN N. Points of significance: visualizing samples with box plots[J]. Nature methods, 2014, 11(2):119-120.