目前,传统浮式防波堤采用钢筋混凝土材质,当混凝土在外荷载作用下出现裂缝时,海洋环境下的钢筋存在锈蚀风险,严重影响结构的耐久性,而玄武岩纤维筋具有轻质高强、抗疲劳、耐腐蚀等特点。因此本文针对玄武岩混凝土组合结构浮式防波堤的失效模式展开试验研究。以1∶20相似比设计并制作4组玄武岩混凝土组合结构浮式防波堤模型,对其进行静载试验,观察其在不同荷载作用下的裂纹发展和极限承载来研究浮式防波堤的失效模式。试验结果表明,玄武岩筋对浮式防波堤的极限承载表现出负面效果,降幅超过30%,双层玄武岩纤维网格在极限承载力方面表现最优,且刚度优于传统钢筋混凝土结构。因此玄武岩混凝土组合结构在静载作用下的失效模式与玄武岩材料的应用形式相关。本文分析了玄武岩材料应用于浮式防波堤的可行性,并提出了优化设计建议,为玄武岩混凝土组合结构在浮式防波堤工程中的应用提供理论依据。
Currently, traditional floating breakwaters are constructed using reinforced concrete materials. When cracks develop in the concrete under external loads, the steel reinforcement in marine environments is at risk of corrosion, significantly compromising the durability of the structure. In contrast, basalt fiber reinforcement offers advantages such as lightweight, high strength, fatigue resistance, and corrosion resistance. Therefore, this paper conducts an experimental study on the failure modes of basalt fiber reinforced concrete (BFRC) composite floating breakwater structures. Four groups of BFRC composite floating breakwater models were designed and fabricated at a 1∶20 scale ratio, and static load tests were performed to observe crack development and ultimate bearing capacity under different load conditions, thereby investigating the failure modes of the floating breakwaters. The experimental results indicate that basalt fiber reinforcement negatively affects the ultimate bearing capacity of the floating breakwater, reducing it by more than 30%. However, double-layer basalt fiber grids demonstrated the best performance in terms of ultimate bearing capacity, with superior stiffness compared to traditional reinforced concrete structures. Thus, the failure modes of BFRC composite structures under static loading are closely related to the application form of basalt materials. This paper analyzes the feasibility of applying basalt materials to floating breakwaters and proposes optimization design recommendations, providing a theoretical basis for the application of BFRC composite structures in floating breakwater engineering.
2025,47(23): 158-164 收稿日期:2025-3-17
DOI:10.3404/j.issn.1672-7649.2025.23.025
分类号:U661.1
基金项目:国家自然科学基金重点项目(52331011)
作者简介:殷皓天(1999-),男,硕士研究生,研究方向为浮式结构物结构性能
参考文献:
[1] ABTAHI S M, SHEIKHZADEH M, HEJAZI S M. Fiber-reinforced asphalt-concrete-A review[J]. Construct Build Mater, 2010, 24(6): 871-877.
[2] AYDIN A C. Self compactability of high volume hybrid fiber reinforced concrete[J]. Construct Build Mater, 2007, 21(6): 1149-1154.
[3] 刘嘉麒. 玄武岩纤维材料[M]. 北京: 化学工业出版社, 2021.
[4] QING L, CHENG Y, MU R. Toughness enhancement and equivalent initial fracture toughness of cementitious composite reinforced with aligned steel fibres[J]. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42(11): 2533-2543.
[5] HUANG B T, YU J, WU J Q, et al. Seawater sea-sand engineered cementitious composites (SS-ECC) for marine and coastal applications[J]. Composites Communications, 2020, 20: 100353.
[6] 杜志刚, 高富强, 武晓雷, 等. 不同侵蚀环境下玄武岩纤维筋的耐腐蚀性及强度变化规律研究[J]. 矿产勘查, 2022, 13(12): 1861-1868.
[7] WANG D H, JU Y Z, SHEN H, et al. Mechanical properties of high performance concretereinforced with basalt fiber and polypropylene fiber[J]. Construction and Building Materials, 2019, 197: 464-473.
[8] MOHANAVEL V. Mechanical and microstructural characterization of AA7178-TiB2 composites[J]. Materials Testing, 2020, 62: 146-150.
[9] MOHANAVEL V, RAVICHANDRAN M. Influence of AlN particles on microstructure, mechanical and tribological behaviour in AA6351 aluminum alloy[J]. Materials Research Express, 2019, 6: 106557.
[10] ESLAMI F R, REZA K S M, HEDAYATNASAB Z, et al. Influence of thermal conditions on the tensile properties of basalt fiber reinforced polypropylene–clay nanocomposites[J]. Mater Des, 2014, 53: 540.
[11] 高经纬. 土木工程领域玄武岩纤维复合材料(BFRP)应用性能研究[J]. 建材发展导向(下), 2015, (9): 56-58.
[12] 于跟社, 邓宗才, 王珏, 等. 玄武岩纤维高性能混凝土轴拉和抗冲击韧性试验研究[J]. 混凝土与水泥制品, 2022(3): 56-60.
[13] 操镜, 王成, 葛广华, 等. 复合盐溶液浸泡下玄武岩纤维混凝土耐腐蚀性能试验研究[J]. 工业建筑, 2022, 52(2): 1-13.
[14] 2010-GB50010. 混凝土结构设计规范[S].
[15] 2020-GB 50608. 纤维增强复合材料工程应用技术标准[S].
[16] GBT 26745-2021. 土木工程结构用玄武岩纤维复合材料[S].
[17] 孟令佩. 节段预制拼装混凝土T型梁力学性能试验研究[D]. 石家庄: 石家庄铁道大学, 2023.