为获取覆盖船舶各个区域的全面信息,研究多传感器组合的船舶精密测量技术。在船舶中部核心区域、船艏与船艉处,安装多个线性激光传感器,采集不同区域的船舶三维轮廓点云数据;依据坐标转换方式,组合多个线性激光传感器采集的船舶三维轮廓点云数据,得到覆盖船舶各个区域的全面船舶三维数据;通过自适应无迹卡尔曼滤波融合估计器,估计坐标转换的旋转矩阵与平移向量,得到更为精准的全面船舶三维数据,通过提取并测量该三维数据中的特征点、线、面,完成船舶精密测量。实验证明:该技术可有效组合船舶三维轮廓点云数据,完成船舶精密测量;在不同温度下,该技术船舶精密测量的相对误差均较小,始终控制在±0.05%以内。
To obtain comprehensive information covering all areas of the ship, the precision measurement technology of ships based on the combination of multiple sensors is studied. Multiple linear laser sensors are installed in the core area of the middle of the ship, at the bow and stern to collect three-dimensional contour point cloud data of the ship in different areas. Based on the coordinate transformation method, the three-dimensional contour point cloud data of the ship collected by multiple linear laser sensors are combined to obtain comprehensive three-dimensional data of the ship covering all areas of the ship. By using the adaptive unscented Kalman filter fusion estimator, the rotation matrix and translation vector of the coordinate transformation are estimated to obtain more accurate comprehensive three-dimensional data of the ship. By extracting and measuring the feature points, lines and surfaces in this three-dimensional data, the precise measurement of the ship is completed. Experiments have proved that this technology can effectively combine the three-dimensional contour point cloud data of ships and complete the precise measurement of ships. At different temperatures, the relative error of the precise measurement of this technology for ships is always small, always controlled within ±0.05%.
2025,47(23): 179-183 收稿日期:2025-6-14
DOI:10.3404/j.issn.1672-7649.2025.23.028
分类号:U663
基金项目:山西省基础研究计划青年科学研究项目(202303021222252)
作者简介:李燕(1988-),女,硕士,讲师,研究方向为多源融合定位与智能测量
参考文献:
[1] 沈益骏, 袁鲁明, 刘新. 编码器测距技术在航运船舶压载水测量中的应用[J]. 船海工程, 2023, 52(1): 71-75.
SHEN Y J, YUAN L M, LIU X. Application of encoder ranging technology in shipping vessel' s ballast water measurement[J]. Ship & Ocean Engineering, 2023, 52(1): 71-75.
[2] 佟世琪, 赵鹏, 王月兵, 等. 基于超声相控技术的船舶吃水测量方法[J]. 声学技术, 2023, 42(2): 192-198.
TONG S Q, ZHAO P, WANG Y B, et al. Measurement method of ship draft based on ultrasonic phase control technology[J]. Technical Acoustics, 2023, 42(2): 192-198.
[3] 杨朔, 韩野, 杨凌辉, 等. 基于长度角度并行传感的多目标位姿测量[J]. 光学精密工程, 2025, 33(5): 728-740.
YANG S, HAN Y, YANG L H, et al. Multi-target pose measurement method based on distance and angle parallel measurement[J]. Optics and Precision Engineering, 2025, 33(5): 728-740.
[4] 李生鹏, 韦朋余, 刘豪, 等. 船舶板架结构变形场测量技术研究[J]. 船舶力学, 2024, 28(10): 1599-1610.
LII S P, WEI P Y, LIU H, et al. Deformation field measuring technique of ship grillage structure[J]. Journal of Ship Mechanics, 2024, 28(10): 1599-1610.
[5] 周亮, 王启明, 朱瑞虎, 等. 基于改进RANSAC算法的船舶靠泊姿态测量[J]. 船舶工程, 2025, 47(6): 83-91,159
ZHOU L, WANG Q M, ZHU R H, et al. Ship berthing attitude measurement based on improved RANSAC algorithm[J]. Ship Engineering, 2025, 47(6): 83-91,159
[6] 陈纪军, 潘子英, 郑文涛, 等. X形艉水下航行体姿态角对舵水动力特性的影响[J]. 中国舰船研究, 2023, 18(1): 99-106.
CHEN J J, PAN Z Y, ZHENG W T, et al. Hydrodynamic characteristics of underwater vehicle with X-rudder configuration coupling with incidence and rudder angle[J]. Chinese Journal of Ship Research, 2023, 18(1): 99-106.
[7] 卞鸿巍, 丁贤, 马恒, 等. 基于船舶水动力的六自由度α&ω运动参数发生器[J]. 系统工程与电子技术, 2023, 45(6): 1821-1827
BIAN H W, DING X, MA H, et al. A six-degreee-of-freedom a&ω motion parameter generator based on ship hydrodynamics[J]. Systems Engineering and Electronics, 2023, 45(6): 1821-1827
[8] 孔祥龙, 高阳, 仇晓静, 等. 船载单轴旋转惯导系统转轴倾角动态标定方法[J]. 中国惯性技术学报, 2024, 32(10): 962-967.
KONG X L, GAO Y, QIU X J, et al. Dynamic calibration method for the shaft inclination angles of the shipborne single-axis rotating INS[J]. Journal of Chinese Inertial Technology, 2024, 32(10): 962-967.