在高湿、动态且伴随安全风险的舰船甲板环境中,积水不仅影响船员行走与视觉感知,还会加速设备隐性腐蚀,并因含油污水排放带来跨海域环境压力。因此,以“绿色舰船”理念为设计导向,面向全生命周期提出一套兼具安全性、易维护性与环保合规性的甲板排水系统产品方案。系统构建由数字电容式液位传感器与双通道光学油分传感器组成的实时感知层,以PLC为核心实现泵组分级调度与排水路径的智能分流,减少人工判断依赖。同时,引入两级旋流分离装置,在有限舱段空间中完成油污高效净化与可回收利用。产品化设计强调模块化替换、可视化监控与故障预警机制,以降低维护成本与使用学习门槛。实验验证结果表明,该系统可在多工况下保持稳定排水性能,显著减少油污排放并实现回用,展现出绿色舰船在污染物减量化、资源化与无害化方向的产品实践价值。
In the high-humidity, dynamic, and safety-critical context of ship decks, surface water accumulation not only affects crew mobility and visual perception but also accelerates latent equipment corrosion and poses cross-regional environmental risks due to oily wastewater discharge. Guided by the “Green Ship” design concept, this study proposes a deck drainage system product solution oriented toward full-lifecycle use, with a focus on safety, maintainability, and environmental compliance. The system establishes a real-time sensing layer composed of a digital capacitive liquid-level sensor and a dual-channel optical oil-content sensor, while a PLC-based control unit enables graded pump scheduling and intelligent drainage path switching to minimize reliance on manual judgement. A two-stage cyclone separation module is integrated to achieve highly efficient oil–water purification and resource recovery within limited compartment space. The productized design emphasizes modular replacement, visualized monitoring, and fault-warning mechanisms to reduce maintenance costs and user learning barriers. Experimental validation shows that the system maintains stable drainage performance across multiple operating conditions, significantly reduces oily discharge, and enables water and oil reuse. Overall, it demonstrates product-level value in advancing the Green Ship vision of pollutant reduction, resource utilization, and harmless discharge.
2025,47(23): 194-198 收稿日期:2025-5-14
DOI:10.3404/j.issn.1672-7649.2025.23.031
分类号:U664
作者简介:姬悦棋(2005-),男,研究方向为工业设计与用户体验
参考文献:
[1] 苏丽. 绿色智能散货船混合动力直流组网系统设计[J]. 中国舰船研究, 2023, 18(6): 257-267
SU L. Design of DC grid system for green intelligent hybrid bulk carrier[J]. Chinese Journal of Ship Research, 2023, 18(6): 257-267
[2] 阳春, 谢景, 成玉, 等. 横摇对AAO工艺处理船舶生活污水的影响机制[J]. 中国给水排水, 2025, 41(9): 32-39
YANG C, XIE J, CHENG Y, et al. Impact of rolling on AAO process for treating shipboard domestic sewage[J]. China Water & Wastewater, 2025, 41(9): 32-39
[3] 杨帆, 方斌, 王起. 船舶疏排水系统的防疫功能设计[J]. 船海工程, 2024, 53(1): 77-81.
YANG F, FANG B, WANG Q. Design of epidemic prevention on water supply and sewage discharge systems of ships[J]. Ship & Ocean Engineering, 2024, 53(1): 77-81.
[4] 蒋竹凌, 李滔滔, 羿琦, 等. 基于MWorks的主压载水舱系统注排水仿真研究[J]. 船舶力学, 2025, 29(9): 1343-1351.
JIANG Z L, LI T T, YI Q, et al. Simulation of injection and drainage systems for main ballast tank based on MWorks[J]. Journal of Ship Mechanics, 2025, 29(9): 1343-1351.
[5] 王文全, 汤佳敏, 王诗洋, 等. 排水型船标称伴流的数值模拟与分析[J]. 船舶力学, 2023, 27(5): 690-699
WANG W Q, TANG J M, WANG S Y, et al. Numerical simulation and analysis of nominal wakes of displacement ships[J]. Journal of Ship Mechanics, 2023, 27(5): 690-699
[6] 高晶, 徐麟, 王翊. 两型敞口多用途船货舱喷淋系统及舱底系统设计方案比较[J]. 船海工程, 2023, 52(5): 131-136
GAO J, XU L, WANG Y. Compare with two kinds of spray water system and bilge system for the open top multi-purpose vessels[J]. Ship & Ocean Engineering, 2023, 52(5): 131-136
[7] 王慧, 余海廷, 王世鹏, 等. 中高速排水型船舶方尾通气特性与静水阻力研究[J]. 水动力学研究与进展A辑, 2025, 40(1): 127-138.
WANG H, YU H T, WANG S P, et al. Numerical investigation on transom stern ventilation and resistance in calm water of moderate and high speed displacement ship[J]. Journal of Hydrodynamics, 2025, 40(1): 127-138.