高强度的战场对抗对指控系统的交互效率提出了更高要求,以用户为中心、高效、便捷的交互方式是当前人机交互技术的重要发展方向。眼控交互将眼睛作为信息的输入和输出通道,为人机交互拓展了新的交互通道。基于以人为本的设计原则,结合指控系统的交互需求,针对典型任务场景,设计出一套眼势交互动作。通过搭建眼势交互平台,与传统交互方式进行对比,使用统计学T检验分析证实在相同任务场景下,眼势交互耗时平均缩短4.68%,用户的负荷程度更低,交互沉浸感更强。眼势交互引入指控系统人机交互通道能够简化指控流程,有效提升指挥效率。
High-intensity battlefield confrontation puts forward higher requirements for the interaction efficiency of the accusation system, and user-centered, efficient and convenient interaction is the important development direction of current human-computer interaction technology. Eye–controlled interaction takes eyes as the input and output channel of information, expanding a new interaction channel for human-computer interaction. Based on the human-centered design principle, combined with the interaction requirements of the accusation system, a set of eye gesture interaction actions are designed for typical task scenarios. By building an eye gesture interaction platform and comparing it with the traditional interaction methods, the statistical T-test analysis confirms that under the same task scenario, the time consumption of eye gesture interaction is shortened by 4.86 percent on average, the user's load is lower, and the sense of immersion in the interaction is stronger. The introduction of eye-gesture interaction into the human-computer interaction channel of the charging system can simplify the charging process and effectively improve the command efficiency.
2025,47(23): 199-205 收稿日期:2025-3-12
DOI:10.3404/j.issn.1672-7649.2025.23.032
分类号:U662.9;E869
作者简介:周昀(1994-),女,硕士,工程师,研究方向为潜艇指挥控制系统与人机交互技术
参考文献:
[1] REN F J, BAO Y W. A review on human-computer interaction and intelligent robots[J]. International Journal of Information Technology & Decision Making, 2020, 19(1): 5–47.
[2] 宁云晖, 陈科, 尤岳, 等. 自适应智能人机交互在水下指挥控制系统的应用[J]. 指挥控制与仿真, 2024, 46(2): 24-28.
NING Y H, CHEN K, YOU Y, et al. Application of adaptive intelligent human-machine interaction in underwater command and control systems[J]. Command Control & Simulation, 2024, 46(2): 24–28.
[3] BLACKLER A, POPOVIC V, MAHAR D. Investigating users` intuitive interaction with complex aetefacts[J]. Applied Ergonomics, 2010, 41(1): 72–92.
[4] 林敏. 基于眼动信息的人机交互关键技术研究[D]. 上海: 上海大学, 2014.
[5] 罗颖. 基于增强现实的交护界面设计研究[D].武汉: 华中科技大学, 2012.
[6] CHEN Y, TSAI M J. Eye-hand coordination strategies during active video game playing: An eye-tracking study[J]. Computers in Human Behavior, 2015, 51: 8-14.
[7] BOZOMITU R G, PSRIC A, TRNICERIU D, et al. Development of an eye tracking-based human-computer interface for real-time applications[J]. Sensors (Basel, Switzerland), 2019, 19(16), 3630.
[8] LEE H, LIM S Y, LEE I, et al. Multi-modal user interaction method based on gaze tracking and gesture recognition[J]. Signal Processing Image Communication, 2013, 28(2): 114-126
[9] 杨忠豪. 面向残疾人的眼动交互技术研究[D]. 杭州: 浙江大学, 2015.
[10] 朱麒文, 闫隆鑫, 张若兰, 等. 基于视线追踪的眼控鼠标设计[J]. 电子器件, 2016, 39(2): 235-241.
ZHU L W, YAN L X, ZHANG R L, et al. Design of eye-controlled mouse based on eye tracking technology[J]. Chinese Journal of Electron Devices, 2016, 39(2): 235-241.
[11] YOUNG L R , SHEENA D . Survey of eye movement recording methods[J]. Behavior Research Methods, 1975, 7(5): 397–429.
[12] 高闯. 眼动实验原理, 眼动的神经机制、研究方法与技术[M]. 武汉: 华中师范大学出版社, 2012.
[13] 石磊, 邓昌智, 戴国忠. 一种Post-WIMP界面: PGIS的实现[J]. 中国图象图形学报, 2010, 15(7): 8.
SHI L, DENG C Z, DAI G Z. Implementation of PGIS: A type of WIMP user interface[J]. Journal of Image and Graphics, 2010, 15(7): 8.
[14] 冯成志. 眼动人机交互[M]. 苏州: 苏州大学出版社, 2010.
[15] 李宏汀, 徐源, 田雨, 等. 激发点击的不同注视时间参数对眼控交互操作绩效的影响[J]. 人类工效学, 2017, 23(2): 45-49
LI H T, XU Y, TIAN Y, et al. The Influence of fixation time parameter of activated clicks on eye-controlled interaction operation perfoemance[J]. Chinese Journal Journal of Ergonomics, 2017, 23(2): 45–49
[16] 袁春兴. 基于眼动的人机自然交互[D]. 长沙: 国防科学技术大学, 2015.
[17] 朱潇潇. 基于眼势的眼控界面交互设计研究[D]. 南京: 东南大学, 2019.
[18] 季春兰. 高中生认知负荷量表的编制及其相关研究[D]. 南京: 南京师范大学, 2011.
[19] HART S G , STAVELAND L E. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research[J]. Advances in Psychology, 1988, 52(6): 139-183