本文以集装箱船从新加坡港到好望角为背景提出一种创新性的船舶减阻策略:基于温度差的冷热水减阻。该法利用船舶在不同地理纬度海域航行时的温度差异,通过在热带海域将海水注入压载水舱,在寒带海域排出热水,利用温度差异带来的密度与动力粘度变化来减少阻力。本文利用CFD软件建立不同缩尺比下船舶数值仿真方法,系统研究不同缩尺效应下这种减阻策略的性能表现,分析了其在实际应用中的可行性和效果差异。结果表明,在适当的条件下,这种策略均能显著降低船舶的航行阻力。同时利用POD分解(本征正交分解法)对不同缩尺比下桨盘面伴流场进行分析,为船舶减阻技术的进一步发展提供新的思路与方法,同时也为实现绿色航运目标贡献科学依据。
This paper proposes an innovative ship drag reduction strategy—temperature-differential-based hot and cold water drag reduction—set against the backdrop of a container ship sailing from Singapore Port to the Cape of Good Hope. The approach leverages temperature differences in different geographic latitudes, injecting seawater into ballast tanks in tropical regions and discharging heated water in polar regions. By utilizing the changes in density and dynamic viscosity caused by temperature differences, this strategy reduces hydrodynamic resistance. The paper employs CFD software to develop a numerical simulation method for the ship under various scale ratios and systematically investigates the performance of this drag reduction strategy under different scaling effects. It also analyzes the feasibility and effectiveness of this strategy in practical applications. The results indicate that, under appropriate conditions, this strategy significantly reduces ship resistance. Furthermore, the study uses Proper Orthogonal Decomposition (POD) to analyze the wake flow field around the propeller disk under different scale ratios. This research provides new ideas and methods for the further development of ship drag reduction technology and contributes scientific evidence toward achieving the goal of green shipping.
2025,47(24): 1-9 收稿日期:2024-12-17
DOI:10.3404/j.issn.1672-7649.2025.24.001
分类号:U661.311
基金项目:国家自然科学基金资助项目(51709133)
作者简介:王志博(1983-),男,博士,教授/研究员,研究方向为智慧数值水池
参考文献:
[1] BHWA, C Y O, C Q Y. Numerical study on the influence of air layer for propeller performance of large ships - ScienceDirect[J]. Ocean Engineering, 2020.195(1): 0029-8018.
[2] 马忠鑫, 冀楠, 罗意, 等. 尺度效应对船舶在受限水域航行时的流场偏移影响研究[J]. 水动力学研究与进展(A辑), 2022, 37(5): 691-697.
MA Z X, JI N, LUO Y, et al. Study on the impact of scale effect on flow field displacement of ships navigating in restricted waters[J]. Journal of Hydrodynamics Research and Progress A, 2022, 37 (5): 691-697.
[3] 叶代扬, 封少雄, 苗洋, 等. 船舶微气泡减阻尺度效应数值研究[J]. 武汉理工大学学报(交通科学与工程版), 2024, 21(3): 1-10.
YE D Y, FENG S X, MIAO Y, et al. Numerical study on scale effect of ship microbubble drag reduction[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2024, 21 (3): 1-10.
[4] BHWA, CYO, CQY. Numerical study on the influence of air layer for propeller performance of large ships-ScienceDirect[J]. Ocean Engineering, 2019, 195(5): 125-150.
[5] KUMAGAI I, NAKAMURA N. A new power-saving device for air bubble generation: Hydrofoil air pump for ship drag reduction[C]//Proceedings of International Conference on Ship Drag Reduction, 2010.
[6] CASTRO A M, CARRICA P M, STERN F. Full scale self-propulsion computations using discretized propeller for the KRISO container ship KCS[J]. Computers & Fluids, 2011, 51(1): 35-47.
[7] ZHANG Z R. Verification and validation for RANS simulation of KCS container ship without/with propeller[J]. Journal of Hydrodynamics Ser B, 2010, 22(5): 932-939.
[8] SEONG H P, INWON L. Optimization of drag reduction effect of air lubrication for a tanker model, International[J]. Journal of Naval Architecture and Ocean Engineering, 2018, 10(4): 427-438.
[9] 张李伟, 钱疆伟, 陆明秋, 等. 船舶节能途径及发展趋势综述[J]. 船舶, 2015, 26(5): 30-39.
ZHANG L W, QIAN J W, LU M Q, et al. Overview of energy-saving approaches and development trends for ships[J]. Ship, 2015, 26(5): 30-39.
[10] TU H, YANG Y, ZHANG L, et al. A modified admiralty coefficient for estimating power curves in EEDI calculations[J]. Ocean Engineering, 2018, 150(3): 309-317.
[11] 张恒, 詹成胜. 基于 CFD 的船舶阻力尺度效应研究[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(2): 329-332.
ZHANG H, ZHAN C S. Research on scale effect of ship resistance based on CFD[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2015, 39(2): 329-332
[12] 李晓植. 螺旋桨盘面比对KCS船自航性能的影响研究[D]. 武汉: 华中科技大学, 2019.
[13] FENG D, YE B, ZHANG Z, et al. Numerical simulation of the ship resistance of KCS in different water depths for model-scale and full-scale[J]. Journal of Marine Science and Engineering, 2020, 12(10): 110-135.
[14] 陈志明, 袁剑平, 严谨, 等. 基于MRF方法和滑移网格的螺旋桨水动力性能研究[J]. 船舶工程, 2020, 7(1): 15-23.
CHEN Z M, YUAN J P, RIGOROUS, et al. Research on the hydrodynamic performance of propellers based on MRF method and sliding mesh[J]. Ship Engineering, 2020, 7 (1): 15-23.