当前,海上浮式风电平台减荡的基础方式是采用立柱-减荡板组合装置。结合浮式基础的运动分析发现,减缓垂荡运动是保证平台稳定性的一个重要方向。本文以单浮体减荡板为研究对象,分析减荡板的不同开孔形式对水动力特性的影响。采用数值计算和试验验证相结合方式,在不同工况下对各种倒角开孔形式进行垂向力、附加质量系数和阻尼系数等水动力参数进行规律分析,得出开孔对垂向减荡效果有益,并且随着开孔倒角角度变化,单浮体减荡装置的水动力特性规律出现明显改变。
At present, the combination device of pillar and slab is often used to reduce the vibration of offshore floating wind power platform foundation.Through an analysis of the motion of floating foundations, it is found that reducing heave motion is a crucial aspect of ensuring platform stability. This paper focuses on the single floating body damping plate, analyzing the impact of different hole designs on its hydrodynamic characteristics. By combining numerical calculations with experimental validation, vertical force, added mass coefficient, and damping coefficient under different conditions are systematically analyzed for various chamfered hole designs. The results indicate that perforation improves the heave damping effect, and as the chamfer angle of the hole changes, the hydrodynamic characteristics of the single floating body damping device exhibit significant alterations.
2025,47(24): 10-15 收稿日期:2024-12-30
DOI:10.3404/j.issn.1672-7649.2025.24.002
分类号:U661.3
基金项目:国家自然科学基金资助项目(52271293 )
作者简介:王伟(1981-),男,博士,副教授,研究方向为船舶与海洋结构物设计制造
参考文献:
[1] RAMALINGAM V, RAMALINGAM S, SRINIVASAN R, et al. Parametric study on the hydrodynamic response of DSI polygonal shaped FPSO[J]. Brodogradnja, 2017, 68(2): 93-107
[2] 黄致谦, 周蕊, 丁勤卫, 等. 基于浮式风力机平台的分形特征垂荡板强迫振动水动力特性[J]. 热能动力工程, 2018, 33(5): 133-140.
[3] CIBA E. Heave motion of a vertical cylinder with heave plates[J]. Polish Maritime Research, 2021, 28(9): 42-47.
[4] 张帆. 深海立柱式平台概念设计及水动力性能研究[D]. 上海: 上海交通大学, 2008.
[5] WADHWA H, THIAGARAJAN KP. Experimental assessment of hydrodynamic coefficients of disks oscillating near a free surface[C]//International Conference on Offshore Mechanics and Arctic Engineering, Honolulu Hawaii, USA: OMAE, 2009.
[6] 阳晨, 张继生, 李浩然, 等. 低频运动下半潜式风机垂荡板水动力特性研究[J]. 海洋工程, 2025, 43(3): 27-36.
[7] BEJI S. Formulation of wave and current forces acting on a body and resistance of ships[J]. Ocean Engineering, 2021: 218.
[8] TURNER M, WANG LU, KT AMY ROB. Heave-plate hydrodynamic coefficients for floating offshore wind turbines a compilation of data: preprint. golden, CO: National Renewable Energy Laboratory[J]. 2024. NREL/CP-5000-87275.
[9] CIBA E, DYMARSKI P, GRYGOROWICZ M. Heave plates with holes for floating offshore wind turbines[J]. Polish Maritime Research, 2022, 29(1): 26-33.
[10] TAO L, CAI S. Heave motion suppression of a spar with a heave plate[J]. Ocean Engineering, 2004, 31: 669-692.
[11] 柳淑学, 赵敏, 李金宣, 等. 开孔垂荡板的水动力特性试验研究[J]. 水动力学研究与进展, 2012, 27(3): 248-255.
[12] 吴维武, 缪泉明, 匡晓峰, 等. Spar 平台垂荡板受迫振荡水动力特性试验研究[J]. 船舶力学, 2009, 13(1): 27-33.
[13] WANG W, FAN S, YOU Y, et al. Study on the influence of chamfer perforation on heave and pitch of single floating platform[J]. Polish Maritime Research, 2023, 117(30): 43-53.
[14] 杨林林, 李红涛, 唐广银, 等. 浮式风机风载荷与浮式基础运动相互影响研究[J]. 舰船科学技术, 2024, 46(1): 56-62.
YANG L L, LI H T, TANG G Y, et al. Study on the interaction between wind load of floating wind turbine and motion of floating foundation[J]. Ship Science and Technology, 2024, 46(1): 56-62.
[15] 纪亨腾, 黄国梁, 范菊. 垂荡阻尼板的强迫振动试验[J]. 上海交通大学学报, 2003, (7): 977-980.
[16] LUCOR D, IMAS L, KARNIADAKIS G E. Vortex dislocations and force distribution of long flexible cylinders subjected to sheared flows[J]. Journal of Fluid and Structures, 2001, 15(3-4): 641-650.