以Suboff标准潜艇模型为研究对象,基于分层流体动力学理论,采用数值模拟方法,重点探究了分层海水环境中潜艇阻力特性与尾流演化的耦合机制。构建数值模型,并与实验结果做对比,验证模型准确性。拟合出近一年内西北太平洋某经纬度深度-密度函数,为数值模型恒密度流体介质添加深度-密度函数,将密度分层流的结果与均匀流仿真结果相对比,二者呈现出相同趋势。最后探究潜艇阻力和尾流速度场在固定航速不同密度下的演化,研究结果为潜艇在复杂海洋环境中的水动力设计以及性能预测提供参考。
This study focuses on the standard Suboff submarine model as the research subject. Based on stratified fluid dynamics theory, we employed numerical simulation methods to investigate the coupled mechanism between submarine resistance characteristics and wake evolution in a density-stratified seawater environment. A numerical model was constructed and validated against experimental data to ensure its accuracy. A depth-dependent density function for a specific location (latitude and longitude) in the Northwestern Pacific Ocean over the past year was fitted. This function was then incorporated into the numerical model to define the density-stratified fluid medium. The simulation results under density-stratified flow conditions were compared with those under uniform flow (constant density) conditions. Both sets of results exhibited similar trends. Finally, the evolution of submarine resistance and wake velocity fields under constant navigation speed across varying seawater densities is investigated. The findings provide critical references for hydrodynamic design and performance prediction of submarines operating in complex stratified ocean environments.
2025,47(24): 30-36 收稿日期:2025-6-11
DOI:10.3404/j.issn.1672-7649.2025.24.005
分类号:U661.1
作者简介:卢增雄(2000-),男,硕士研究生,研究方向为水下航行器水动力
参考文献:
[1] 檀大林, 周济福, 王旭. 海洋密度剖面模型及其适用性研究[J]. 海洋科学进展, 2021, 39(1): 30-36.
TAN DALIN, ZHOU JIFU, WANG XU. Research on ocean density profile models and their applicability[J]. Advances in Marine Science, 2021, 39(1): 30-36.
[2] PAN Y C, ZHANG H X, ZHOU Q D. Numerical prediction ofsubmarine hydrodynamic coefficients using CFD Simulation[J]. Journal of Hydrodynamics, 2012, 24(6): 840-847.
[3] LIU H L, THOMAS T H. Summary of DARPA suboff experimental program data[R], Naval Surface Warfare Center, Carderock Division (NSWCCD), 1999 .
[4] 刘明坤, 徐辰, 曾荆州, 等. 水下航行体尾流演化特征的数值模拟研究[J]. 舰船科学技术, 2024, 46(4): 27-34.
LIU MINGKUN, XU CHEN, ZENG JINGZHOU, et al. Numerical simulation study on the evolution characteristics of wake of underwater vehicles[J]. Ship Science and Technology, 2024, 46(4): 27-34.
[5] JIMÉNEZ J M, HULTMARK M, SMITS A J. The intermediate wake of a body of revolution at high Reyno-lds numbers[J]. Journal of Fluid Mechanics, 2010, 65(9): 516-539.
[6] 董国华, 姚朝帮, 冯大奎, 等. 密度分层流中潜艇阻力性能研究[J]. 中国造船, 2022, 63(3): 40-50.
DONG GUOHUA, YAO CHAOBANG, FENG DAKUI, et al. Research on submarine resistance performance in density stratified flow[J]. Shipbuilding of China, 2022, 63(3): 40-50.
[7] LIU S, HE G, WANG Z, et al. Resistance and flow field of a submarine in a density stratified fluid[J]. Ocean Engineering, 2020, 21(7): 107-141.
[8] HUANG F, MENG Q, CAO L, et al. Wakes and free surface signatures of a generic submarine in the homogeneous and linearly stratified fluid[J]. Ocean Engineering, 2022, 250: 111062.
[9] KUMAR P, MAHESH K. Large eddy simulation of flow over an axisymmetric body of revolution[J]. Journal of Fluid Mechanics, 2018, 853: 537-563.
[10] TOWNSEND A A. The structure of turbulent shear flow[M]. Cambridg University Press, 1956.
[11] TUMMERS M J, HANJALIĆ K, PASSCHIER D M, et al. Computations of a turbulent wake in a strong adverse pressure gradient[J]. International Journal of Heat and Fluid Flow, 2007, 28(3): 418-428.
[12] POPE S B. Turbulent flows [M]. Cambridge: Cambridge University Press, 2000.