轴系作为船舶和潜艇的关键组件,工作时产生的低频噪声很难屏蔽,为研究其规律,对轴系横纵耦合振动的低频线谱进行研究。首先,将轴系简化为梁单元,基于梁单元建立刚度矩阵、质量矩阵;然后,使用有限单元法对轴系横纵耦合振动产生的低频线谱振动进行研究。结果表明,横纵耦合振动下会产生横纵激励频率组合下的振动响应,其中纵向振动响应频率主要有二倍横向激励频率和纵向激励频率之差、纵向激励频率和二倍横向激励频率3个频率,横向振动响应频率有横纵激励频率差、横向激励频率和横纵激励频率之和。激励频率、振幅、轴系的跨距和陀螺效应等都会对振动产生影响。
As a key component of ships and submarines, the shafting is difficult to shield the low-frequency noise generated during operation. In order to study the law of the shafting, the low-frequency line spectrum of the transverse and longitudinal coupling vibration of the shafting is studied. Firstly, the shaft system is simplified as a beam element, and the stiffness matrix and mass matrix are established based on the beam element. Then, the low-frequency line spectrum vibration produced by the transverse and longitudinal coupling vibration of the shaft system is studied by using the finite element method. The results show that the transverse and longitudinal coupling vibration will produce the vibration response under the transverse and longitudinal excitation frequency combination. The longitudinal vibration response frequency mainly includes three frequencies: the difference between the transverse excitation frequency and the longitudinal excitation frequency, the longitudinal excitation frequency and the double transverse excitation frequency. The transverse vibration response frequency includes the transverse and longitudinal excitation frequency difference, the transverse excitation frequency and the transverse and longitudinal excitation frequency sum. Additionally, factors such as excitation frequency, amplitude, shafting span, and gyroscopic effects were found to significantly influence the vibration.
2025,47(24): 37-44 收稿日期:2025-1-2
DOI:10.3404/j.issn.1672-7649.2025.24.006
分类号:U662.2
基金项目:国家自然科学基金资助项目(52241102)
作者简介:徐亚水(2000-),男,硕士,研究方向为轴系振动
参考文献:
[1] 李海超. 大型复杂结构低频线谱振动优化设计研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
[2] 李彦, 何琳, 帅长庚, 等. 船舶机械低频线谱振动传递的主动控制[J]. 船舶力学, 2015(12): 1549-1563.
LI Y, HE L, SHUAI C G, et al. Active control of low-frequency sinusoidal vibration transmission of ship machinery[J]. Journal of Ship Mechanics, 2015(12): 1549-1563.
[3] 宋志强, 陈婧, 马震岳. 水轮发电机组轴系统横纵耦合振动研究[J]. 水力发电学报, 2010, 29(6): 149-155.
SONG Z Q, CHEN J, MA Z Y. Coupling between the lateral bending and axial vibrations of a water turbine generator set shaft system through thrust bearing[J]. Journal of Hydroelectric Engineering, 2010, 29(6): 149-155.
[4] 胡义, 杨建国. 梁纵横耦合振动研究[J]. 武汉理工大学学报(交通科学与工程版), 2010, 34(3): 537-541.
HU Y, YANG J G. Studies on the longitudinal and lateral coupled vibration of beam[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2010, 34(3): 537-541.
[5] 李乐坤, 秦云龙, 蒋林心, 等. 柔性支撑推进系统-艇体耦合系统声振特性研究[J]. 数字海洋与水下攻防, 2024, 7(3): 260-267.
LI L K, QIN Y L, JIANG L X, et al. Research on vibro-acoustic characteristics of flexible supporting propeller-hullcoupling system[J]. Digital Ocean & Underwater Warfare, 2024, 7(3): 260-267.
[6] 杨志荣, 邹冬林, 饶柱石, 等. 船舶推进轴系纵横耦合振动响应分析[J]. 船舶力学, 2014(12): 1482-1494.
YANG Z R, ZOU D L, RAO Z S, et al. Responses of longitudinal and transversal nonlinear coupling vibration of ship shafting[J]. Journal of Ship Mechanics, 2014(12): 1482-1494.
[7] 徐鹏, 邹冬林, 吕芳蕊, 等. 船舶推进轴系弯—纵耦合效应的非线性振动特性[J]. 中国舰船研究, 2019, 14(5): 49-57.
XU P, ZOU D L, LÜ F R, et al. Nonlinear vibration characteristics of marine propulsion shafting under bending-longitudinal coupling effect[J]. Chinese Journal of Ship Research, 2019, 14(5): 49-57.
[8] LIU X, WU H G, ZHAO S Q, et al. Experimental analysis of rotating bridge structural responses to existing railway train loads via time–frequency and Hilbert–Huang transform energy spectral analysis[J]. Scientific Reports, 2024, 14(1): 83-85.
[9] ZHAO Y H, CUI H J. A study of analyzing longitudinal dynamic behavior of a double-rod system with longitudinal nonlinear supports[J]. Scientific Reports, 2024, 14(1): 7-11.
[10] ZHAO Y H, DU J T, CHEN, Y L, et al. Nonlinear dynamic behavior of a generally restrained pre-pressure beam with a partial non-uniform foundation of nonlinear stiffness[J]. International Journal of Structural Stability and Dynamics, 2023, 23(3): 2350028.
[11] 邹冬林, 张建波, 塔娜, 等. 船舶推进轴系纵横耦合非线性动力学分析—叶频激励下横向主共振响应[J]. 船舶力学, 2017, 21(2): 201-210.
ZOU D L, ZHANG J B, TA N, et al. Coupled longitudinal-transverse nonlinear dynamics of a marine propulsion shafting—primary resonance under blade frequency excitation[J]. Journal of Ship Mechanics, 2017, 21(2): 201-210.
[12] 邹冬林, 荀振宇, 饶柱石, 等. 主共振与内共振下纵横耦合轴系动力学分析[J]. 振动工程学报, 2016(29): 511-520.
ZOU D L, XUN Z Y, RAO Z S, et al. Dynamics of the coupled longitudinal-transverse shafts under primary and internal resonances[J]. Journal of Vibration Engineering, 2016(29): 511-520.
[13] ZOU D L, LIU L, RAO Z S, et al. Coupled longitudinal-transverse dynamics of a marine propulsion shafting under primary and internal resonances[J]. Journal of Sound and Vibration, 2016, 372(6): 299-316.
[14] 邹冬林, 刘翎, 饶柱石, 等. 利用有限元法与打靶法的纵横耦合轴系主共振分析[J]. 振动工程学报, 2016, 29(1): 87-95.
ZOU D L, LIU L, RAO Z S, et al. Primary resonances of shafts with coupled longitudinal-transverse vibration by finite element and shooting methods[J]. Journal of Vibration Engineering, 2016, 29(1): 87-95.