载流管路的流致振动响应快速和准确预报对舰船振动噪声优化设计具有极大的工程意义,本文采用Abaqus稳态线性动力学方法对三通载流管路梁、壳模型动力学特性进行仿真分析,以流场计算脉动压力分段积分集中载荷作为管路流致振动单向流固耦合的激励输入,对比分析了梁、壳模型在考虑流体激励不同相位、不同载荷范围等加载方式对三通载流管路振动响应特性的影响,并与试验结果进行对比分析。研究结果表明:载流管路的单向流固耦合振动响应计算可以以分布集中力的形式加载,但需考虑流体激励的随机相位,数值计算结果与试验误差小于3 dB,满足工程预报需求。
The rapid and accurate prediction of flow-induced vibration responses in fluid-carrying pipelines holds significant engineering value for the optimal design of ship vibration and noise reduction. In this study, the Abaqus steady-state linear dynamics method is employed to simulate and analyze the dynamic characteristics of beam and shell models for a T-branch fluid-carrying pipeline. The pulsating pressure obtained from computational fluid dynamics (CFD) simulations is converted into distributed concentrated loads through piecewise integration, serving as the excitation input for the one-way fluid-structure interaction (FSI) in flow-induced vibrations. A comparative analysis is conducted to investigate the effects of different loading conditions—including varying phases of fluid excitation and different load application ranges—on the vibration response characteristics of the T-branch pipeline using both beam and shell models. The numerical results are validated against experimental data.
2025,47(24): 45-50 收稿日期:2025-12-1
DOI:10.3404/j.issn.1672-7649.2025.24.007
分类号:U662.2
作者简介:周冉辉(1978-),男,硕士,工程师,研究方向为舰船总体设计技术研究及项目管理
参考文献:
[1] 吴江海, 孙玉东, 尹志勇. 充液分支管流固耦合振动及功率流分析[J]. 中国造船, 2023, 64(2): 253-263.
WU J H, SUN Y D, Yin Z Y. Analysis of fluid-structure interaction vibration and power flow in liquid-filled branch pipes[J]. Shipbuilding of China, 2023, 64(2): 253-263.
[2] 程利, 陈明, 汪利. 压力脉动条件下输流管道振动特性分析[J]. 舰船科学技术, 2023, 45(15): 71-76.
CHENG L, CHEN M, WANG L. Vibration characteristics analysis of fluid-conveying pipes under pressure pulsation conditions[J]. Ship Science and Technology, 2023, 45(15): 71-76.
[3] 蔡标华, 方超, 马士虎, 等. 流固耦合作用下的注水管路流激振动噪声数值模拟[J]. 舰船科学技术, 2020, 42(7): 118-122.
CAI B H, FANG C, MA S H, et al. Numerical simulation of flow-induced vibration and noise in water injection pipelines under fluid-structure interaction[J]. Ship Science and Technology, 2020, 42(7): 118-122.
[4] 吴江海, 尹志勇, 王纬波, 等. 船用复合材料管路振动特性试验研究[J]. 舰船科学技术, 2020, 42(7): 85-89+122.
WU J H, YIN Z Y, WANG W B, et al. Experimental study on vibration characteristics of marine composite material pipelines[J]. Ship Science and Technology, 2020, 42(7): 85-89+122.
[5] 张啸涵, 黄修长, 曾庆娜, 等. 基于传递矩阵的管路-壳体耦合系统动力学建模[J]. 噪声与振动控制, 2024, 44(5): 21-26.
ZHANG X H, HUANG X C, ZENG Q N, et al. Dynamic modeling of pipe-shell coupled system based on transfer matrix[J]. Noise and Vibration Control, 2024, 44(5): 21-26.
[6] 刘诗文, 赫荣辉, 杨钊, 等. 输流管网流致振动特性数值模拟研究[J]. 核动力工程, 2022, 43(1): 187-191
LIU S W, HE R H, YANG Z, et al. Numerical simulation study on flow-induced vibration characteristics of fluid-conveying pipe networks[J]. Nuclear Power Engineering, 2022, 43(1): 187-191.
[7] 张琳. 数据与模型融合的载流管路低频线谱振动控制方法研究[D]. 武汉: 华中科技大学, 2023.
[8] 韩天宇, 郭长青, 谌冉曦. 基于Workbench的流固耦合作用下三通管振动特性分析[J]. 南华大学学报(自然科学版), 2020, 34(3): 17-24.
HAN T Y, GUO C Q, CHEN R X. Vibration characteristics analysis of tee pipes under fluid-structure interaction based on Workbench[J]. Journal of University of South China (Natural Science Edition), 2020, 34(3): 17-24.
[9] 赵江, 俞建峰, 楼琦. 基于流固耦合的T型管振动特性分析[J]. 振动与冲击, 2019, 38(22): 117-123.
ZHAO J, YU J F, LOU Q. Vibration characteristics analysis of T-shaped pipes based on fluid-structure interaction[J]. Journal of Vibration and Shock, 2019, 38(22): 117-123.
[10] 徐家根, 王海波, 吴晓, 等. 变约束参数T型液压管路振动特性分析[J]. 噪声与振动控制, 2023, 43(5): 82-88.
XU J G, WANG H B, WU X, et al. Vibration characteristics analysis of T-shaped hydraulic pipelines with variable constraint parameters[J]. Noise and Vibration Control, 2023, 43(5): 82-88.