随着船舶种类、数量、吨位的不断增长,三峡库区船舶通航时撞击桥梁的风险日益增大。为避免船舶撞击桥梁事故的发生,安装浮体式防撞装置是目前应用最广泛的保护手段。本文基于显式非线性基本理论,应用LS-DYNA有限元分析软件,对船舶-桥墩防撞浮箱的碰撞全过程进行仿真分析。结果表明,船舶与防撞浮箱碰撞后,撞击力表现出强非线性波动特征;船舶受到的最大作用力与撞击速度、船舶排水量呈正相关;船舶所受最大撞击力出现在碰撞的中后期,碰撞力始终在高位波动;桥墩所受最大撞击力出现在碰撞接触瞬间,当碰撞全过程结束后,迅速回落到较低水平波动;在相同载重量、相同撞击速度的工况下,防撞浮箱最大可降低桥墩所受76%的撞击力,表现出对浮箱的优良保护性能。研究结果可为船舶-浮箱防撞工程建设提供理论方法与经验。
With the continuous increase in the types, quantities, and tonnage of ships, the risk of collision with bridges during navigation in the Three Gorges Reservoir area is also increasing. To avoid collisions between ships and bridges, installing floating anti-collision devices is currently the most widely used protection method. This article is based on the basic theory of explicit nonlinear finite element and applies LS-DYNA finite element analysis software to conduct simulation analysis of the collision process between ships and bridge pier anti-collision floating boxes. The results show that after the collision between the ship and the anti-collision floating box, the impact force exhibits strong nonlinear fluctuation characteristics. The maximum force acting on a ship is positively correlated with the impact velocity and the ship's payload. The maximum impact force on the ship occurs in the middle and later stages of the collision, and the collision force always fluctuates at a high level. The maximum impact force on the bridge pier occurs at the moment of collision contact, and after the entire collision process is completed, it quickly drops back to a lower level of fluctuation. Under the working conditions of the same load capacity and impact speed, the anti-collision floating box can reduce the impact force on the bridge pier by up to 76%, demonstrating excellent protection performance for the floating box. The research results obtained can provide theoretical methods and experience for the construction of ship-floating box anti-collision projects.
2025,47(24): 57-61 收稿日期:2025-5-15
DOI:10.3404/j.issn.1672-7649.2025.24.009
分类号:U663.2;O319.56
基金项目:重庆市杰出青年基金项目(CSTB2023NSCQ-JQX0001);四川省软科学研究计划项目(2022JDR0358)
作者简介:颜洪斌(1968-),男,高级工程师,研究方向为船舶水动力性能、船舶结构物设计与制造
参考文献:
[1] 江华涛, 顾永宁. 整船碰撞非线性有限元仿真 [J]. 上海造船, 2002 (2): 16-21.
[2] 王自力, 顾永宁. 船舶碰撞动力学过程的数值仿真研究 [J]. 爆炸与冲击, 2001, 21(1): 29-34.
[3] 王自力, 蒋志勇, 顾永宁. 船舶碰撞数值仿真的附加质量模型 [J]. 爆炸与冲击, 2002, 22(4): 321-326.
[4] 王自力, 顾永宁. 船舶碰撞数值仿真的一种组合模型 [J]. 华东船舶工业学院学报, 2001, 15(6): 1-6.
[5] 刘建成, 顾永宁. 桥墩塑性防撞装置的力学机理 [J]. 上海交通大学学报, 2003, 37(7): 990-994.
[6] EHLERS S, TABRI K, ROMANOFF J, et al. Numerical and experimental investigation on the collision resistance of the X-core structure[J]. Ships and Offshore Structures, 2012, 7(1): 21-29.
[7] EHLERS S, BROEKHUIJSEN J, ALSOS HS, et al. Simulating the collision response of ship side structures: A failure criteria benchmark study[J]. International Shipbuilding Progress, 2008, 55(12): 127-144.
[8] PILL I, TABRI K. Finite element simulations of ship collisions: A coupled approach to external dynamics and inner mechanics[J]. Ships and Offshore Structures, 2011, 2(6): 59-66.
[9] PEDERSEN P T, S VALSGÅRD, D OLSEN, et al. Ship impacts: Bow collisions[J]. International Journal of Impact Engineering, 1993, 13(2): 163-187.
[10] 韩峰. 桥梁下部结构抗撞性能分析与防撞措施研究[D]. 南京: 东南大学, 2019.
[11] GUO J, HE J X. Dynamic response analysis of ship-bridge collisions experiment[J]. Journal of Zhejiang University-Science A: Applied Physics & Engineering, 2020, 21(7): 525-534.
[12] 蔡斌斌. 船舶—桥墩碰撞有限元数值仿真及桥墩防撞装置的研究[D]. 合肥: 合肥工业大学, 2015.
[13] 陈伟. 桥梁在冲刷和船撞共同作用下的冲击易损性分析[D]. 扬州: 扬州大学, 2020.
[14] 曹明, 张南, 沈强,等. 船桥撞击力影响因素有限元仿真模拟分析[J]. 防灾减灾工程学报, 2021, 41(3): 603-611.
[15] 张爱锋, 刘少康, 姚苗苗,等. 船桥碰撞结构损伤及船撞力影响因素分析[J]. 重庆交通大学学报(自然科学版), 2021, 40(3): 121-127.