燃气轮机呈现出多学科交叉特性及多系统耦合特征,使得单一学科的仿真模型难以满足其综合性能分析需求,亟需开展燃气轮机多系统耦合仿真研究。为开展燃气轮机的多系统耦合仿真研究,本文将基于FMI接口的多系统集成方法应用于燃气轮机的多系统耦合建模,提出基于MWorks的燃气轮机多系统耦合仿真模型构建方法。首先,利用针对不同物理领域的专用软件工具开发子系统仿真模型;其次,基于标准化接口协议建立不同系统间的标准化数据通讯接口并导出为统一文件格式,基于统一平台构建多系统耦合燃气轮机总体性能仿真模型;最后,通过阶跃响应仿真验证模型的动态特性,仿真结果说明基于该方法的多系统集成模型间数据互通稳定,能够满足燃气轮机多系统、多领域耦合模型的建模需要。
Gas turbines exhibit interdisciplinary characteristics and multi-system coupling features, making it difficult for a single discipline's simulation model to meet the comprehensive performance analysis requirements. There is an urgent need to carry out multi-system coupling simulation research for gas turbines. To conduct such research, this paper applies a multi-system integration method based on the FMI interface to the multi-system coupling modelling of gas turbines, proposed a construction method for a gas turbine multi-system coupling simulation model based on MWorks. Firstly, subsystems simulation models are developed using dedicated software tools for different physical domains. Secondly, a standardized data communication interface is established between different systems based on normalized interface protocols and exported to a unified file format, constructing an overall performance simulation model of the multi-system coupled gas turbine on a unified platform. Finally, the dynamic characteristics of the model are validated through step response simulation, with simulation results indicating that the data interchange between the multi-system integrated models based on this method is stable, meeting the modelling needs of gas turbine multi-system and multi-domain coupling models.
2025,47(24): 97-104 收稿日期:2025-3-19
DOI:10.3404/j.issn.1672-7649.2025.24.015
分类号:U664.131
基金项目:基础产品创新科研项目(GT20220501)
作者简介:王志涛(1981-),男,博士,教授,研究方向为燃气轮机总体性能与仿真
参考文献:
[1] 张靖凯, 王志涛, 李淑英, 等. 数字孪生技术在燃气轮机设计领域的发展展望[J]. 舰船科学技术, 2024, 46(20): 104-108.
ZHANG J K, WANG Z T, LI S Y, et al. The development prospect of digital twin for the design of gas turbine[J]. Ship Science and Technology, 2024, 46(20): 104-108.
[2] TONDELLO G, BORUSZEWSKI W, MENGELE F. Coupled simulation of the secondary air flow, heat transfer, and structural deflection of a gas turbine engine[C]//Proceedings of the ASME Turbo Expo, 2012.
[3] SAMPATH, RAJIV. High fidelity system simulation of aerospace vehicles using NPSS[R]. 2004.
[4] AHMED S S, ZEB M K, SALAMAT S. Methodology for development of complete engine deck for a low bypass turbofan engine[C]//2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan, 2021.
[5] MEXIS A. Aerospace propulsion simulation software comparison between NPSS and PROOSIS[R]. 2020.
[6] 杨学森, 程显达, 王天赤, 等. 燃机总体性能与二次空气系统耦合的过渡态仿真[J]. 航空动力学报, 2023, 38(11): 2618-2628.
YANG X S, CHENG X D, WANG T C, et al. Transient simulation for gas turbine overall performance coupled with secondary air system[J]. Journal of Aerospace Power, 2023, 38(11): 2618-2628.
[7] DENG W, XU Y, NI M, et al. Multi-fidelity simulation of gas turbine overall performance by directly coupling high-fidelity models of multiple rotating components[J]. International Journal of Thermal Science, 2014, 33(12): 1357–1378.
[8] WANG Z T, JIAN L, LI T L, et al. Research on simulink/fluent collaborative simulation zooming of marine gas turbine[J]. Applied Computational Intelligence and Soft Computing, 2017, 5(3): 1-8.
[9] WANG Z T, JIAN L, KUO F, et al. The off-design performance simulation of marine gas turbine based on optimum scheduling of variable stator vanes[J]. Mathematical Problems in Engineering, 2017, 11(8): 1-11.
[10] 王志涛, 白冰, 李铁磊, 等. 考虑可调静叶压气机的船舶燃气轮机仿真优化[J]. 哈尔滨工程大学学报, 2017, 38(11): 1721-1726.
WANG Z T, BAI B, LI T L, et al. Simulation optimization of marine gas turbine with VSV compressor[J]. Journal of Harbin Engineering University, 2017, 38(11): 1721-1726.
[11] 刘传凯, 姜宏超, 李艳茹, 等. 航空发动机性能与二次空气系统的耦合仿真模型[J]. 航空动力学报, 2017, 32(7): 1623-1630.
LIU C K, JANG H C, LI Y R. et a1. Coupled smulation model of aerouengine performance and sec ondary air system[J]. Journal of Aerospace Power. 2017.32(7): 1623-1630.
[12] 赵皓岑, 王彬, 叶志锋. 数控燃油计量装置联合建模方法研究[J]. 推进技术, 2016, 37(9): 1752-1758.
ZHAO H C, WANG B, YE Z F. Study on co-modeling method for digital control fuel metering unit[J]. Journal of Propulsion Technology, 2016, 37(9): 1752-1758.
[13] 尹家录, 程显达, 于淼, 等. 间冷循环燃气轮机相似准则及性能修正方法[J]. 航空发动机, 2023, 49(5): 1-7.
YIN J L, CHENG X D, YU M, et al. Research on similarity criteria and performance correction method of intercooled cycle gas turbine[J]. Aeroengine, 2023, 49(5): 1-7.
[14] 王志涛, 申贝贝, 董玉强. 智能船风光互补布雷顿循环发电系统建模仿真及性能分析[J]. 风机技术, 2024, 66(4): 53-59.
WANG Z T, SHEN B B, DONG Y Q. Modeling simulation and performance analysis of wind-solar hybrid brayton cycle power generation system for intelligent ship[J]. Chinese Journal of Turbomachinery, 2024, 66(4): 53-59.
[15] 关天皓. 船用发电燃气轮机精细化建模仿真及性能优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2023.
[16] 李铁磊, 刘瑞, 王志涛, 等. 间冷循环燃气轮机集成仿真及优化匹配方法[J]. 哈尔滨工程大学学报, 2021, 42(8): 1195-1202.
LI T L, LIU R, WANG Z T, et al. Integrated simulation and optimization matching methods of intercooled gas turbines[J]. Journal of Harbin Engineering University, 2021, 42(8): 1195-1202.
[17] HAN X Q, DAI Y B, GUO X H, et al. A novel dual-stage intercooled and recuperative gas turbine system integrated with transcritical organic rankine cycle[J]. System Modeling, Energy and Exergy Analyses, Energy, 2024, 10(1): 1–17.
[18] 刘瑞. 基于集成仿真的间冷循环燃气轮机性能优化及控制策略研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
[19] 吴望一. 流体力学第2版[M]. 北京: 北京大学出版社, 2021.
[20] (美) 梅恩哈德·T. 斯科贝里著. 燃气轮机设计、部件和系统设计集成[M]. 北京: 国防工业出版社, 2021.
[21] PALMIERI M, BERNARDESCHI C, MASCI P. A framework for FMI-based co-simulation of human-machine interfaces[J]. Software and Systems Modeling, 2019, 19(3): 1-23.