舰船在长时间靠泊或航行过程中,尾轴承持续承受着轴和螺旋桨自重引起的复杂力学作用,极易产生蠕变行为,导致轴系在启停机时产生异常的振动噪声,严重影响船舶的航行和设备寿命。开展蠕变前后不同水润滑尾轴承的振动特性对比试验,揭示轴承试块产生蠕变效应前后的振动变化规律。结果表明,当轴承材料发生蠕变后,摩擦系数方面,UN50最大摩擦系数0.3155增大至0.3615,超高分子量聚乙烯由0.3228增大至0.3735,丁腈橡胶由0.4957增大至0.6204。时域信号方面,随着转速和载荷的增加,振动加剧的趋势愈发明显,3种轴承材料也均出现振幅增大的现象,UN50垂向加速度均方根值由6.56 m/s2增大至7.541 m/s2,超高分子量聚乙烯由10.868 m/s2增大至11.761 m/s2,丁腈橡胶由9.267 m/s2增大至10.782 m/s2,平均增幅分别为25.07%,32.77%,30.92%。UN50能起到很好的流体动压润滑效果,在相同的转速和载荷条件下其减振特性明显优于超高分子聚乙烯轴承试块和丁腈橡胶轴承试块,具有卓越的振动控制性能,随着转速和载荷的增加,振动加剧的趋势愈发明显,橡塑共混材料表现出一定的抗蠕变性能。为提升船舶轴承的可靠性和使用寿命提供了重要的参考依据。
During the long time berthing or sailing, the stern bearing continuously bears the complicated mechanical action caused by the shaft and the propeller weight, and it is easy to produce creep behavior, which leads to the abnormal vibration and noise of the shaft system when starting and stopping, seriously affect the navigation of ships and equipment life. The vibration characteristics of different water-lubricated tail bearings before and after creep were compared, and the vibration variation rules of bearing specimens before and after creep were revealed. The results show that the maximum friction coefficient of UN50 increased from 0.3155 to 0.3615, the maximum friction coefficient of UHMWPE from 0.3228 to 0.3735, and the maximum friction coefficient of NBR from 0.4957 to 0.6204. In time domain signal, with the increase of rotating speed and load, the vibration becomes more and more obvious, and the amplitude of three bearing materials also increases, the root-mean-square (RMS) values of UN50 increased from 6.56 m/s2 to7.541 m/s2, UHMWPE from 10.868 m/s2 to 11.761 m/s2, and NBR from 9.267 m/s2 to 10.782 m/s2, with average increases of 25.07%, 32.77%, and 30.92%, respectively. Under the same rotating speed and load condition, UN50 has better vibration reduction performance than UHMPE and NBR bearing test blocks, and has excellent vibration control performance, with the increase of rotational speed and load, the trend of vibration is more obvious, and the rubber-plastic blend shows some creep resistance. It provides an important reference for improving the reliability and service life of ship bearing.
2025,47(24): 105-114 收稿日期:2024-11-12
DOI:10.3404/j.issn.1672-7649.2025.24.016
分类号:U664.21
基金项目:国家自然科学基金资助项目(5210110226)
作者简介:王瑞璞(2000-),男,硕士研究生,研究方向为蠕变对水润滑尾轴承摩擦振动特性
参考文献:
[1] SUN Y, YAN X, YUAN C, et al. Insight into tribological problems of green ship and corresponding research progresses[J]. Friction, 2018, 6(4): 472-483.
[2] 严新平, 梁兴鑫, 刘正林, 等. 船舶水润滑尾轴承服役性能研究及其进展[J]. 中国造船, 2017, 58(3): 221-232.
YAN X P, LIANG X X, LIU Z L, et al. Research and development of service performance of marine water-lubricated stern bearings[J]. China Shipbuilding, 2017, 58(3): 221-232.
[3] WANG H, LIU Z, ZOU L, et al. Influence of both friction and wear on the vibration of marine water lubricated rubber bearing[J]. Wear, 2017, 376-377920-930.
[4] DONG C , YUAN C , BAI X , et al. Study on wear behaviour and wear model of nitrile butadiene rubber under water lubricated conditions[J]. RSC Advances, 2014, 4, 19034–19042
[5] YAN Z M, ZHOU X C, QIN H L, et al. Study on tribological and vibration performance of a new UHMWPE/graphite/NBR water lubricated bearing material[J]. Wear, 2015 (332): 872–878.
[6] 曹源, 周新聪, 黄健, 等. UHMWPE与橡胶共混水润滑轴承摩擦磨损性能试验研究[J]. 润滑与密封, 2020, 45(12): 26-31.
CAO Y, ZHOU X Y, HUANG J, et al. Experimental study on friction and wear properties of UHMWPE/Rubber blend water-lubricated bearings[J]. Lubrication and sealing, 2020, 45(12): 26-31.
[7] ORNDORFF, R L. New UHMWPE/Rubber Bearing Alloy[J]. Journal of Tribology, 2015, 122(1): 367-373.
[8] 黄健. 橡塑水润滑尾轴承材料摩擦学特性研究[D]. 武汉: 武汉理工大学, 2020.
[9] 吴炜, 曹宏涛, 陈汝刚, 等. 船舶推进轴段蠕变减缓应对措施研究[J]. 舰船科学技术, 2009, 31(7): 48-50.
WU W, CAO H T, CHEN R G, et al. Study on measures to slow down creep of ship propulsion shaft[J]. Ship Science and Technology, 2009, 31(7): 48-50.
[10] LUO K R, ZHOU X, TANG J. Numerical prediction and experiment on rubber creep and stress relaxation using time-dependent hyperelastic approach[J]. Polymer Testing, 2016, 52: 246-253.
[11] 周亚博, 王优强, 龙慎文, 等. 橡胶蠕变特性对水润滑橡胶轴承弹流润滑的影响[J]. 机械传动, 2018, 42(7): 9-13.
ZHOU Y B, WANG Y Q, LONG S W, et al. Effect of rubber creep characteristics on elastohydrodynamic lubrication of water-lubricated rubber bearings[J]. Mechanical Transmission, 2018, 42(7): 9-13.
[12] JOHANN G. Effect of creep on the nonlinear vibration characteristics of blades with interlocked shrouds[J]. International Journal of Non-Linear Mechanics, 2018: 240-246.
[13] LENG D X. A hyper-elastic creep approach and characterization analysis for rubber vibration systems[J]. Polymers 2019, 988.
[14] ANGIOLO F, LORENZO F, FABIO R, et al. Creep, recovery and vibration of an incompressible viscoelastic material of the rate type: Simple tension case[J]. International Journal of Non-Linear Mechanics, 2022, 138.