针对调距桨轴系及轴内油管抗冲击分析中传统动态设计法(Dynamic Design Analysis Method,DDAM)精度不足、全时域法效率低的问题,提出一种DDAM-时域法耦合的计算方法。将轴内油管简化为轴系的附加质量,通过DDAM法计算基准冲击谱;构建时域冲击输入载荷,完成轴内油管精细化计算分析。以某型舰船调距桨轴系及轴内油管为对象,采用此方法对其进行抗冲击性能研究。结果表明,耦合方法计算耗时10 h,较全时域法计算时间降低67%,轴系最大综合应力响应为391.91 MPa,轴内油管最大应力响应为216.42 MPa,均低于材料许用应力值,满足抗冲击要求。为船舶推进系统抗冲击设计提供了一种“整体-分布”分层分析的高效研究方法。
Aiming at the issues of insufficient accuracy in the traditional Dynamic Design Analysis Method (DDAM) and low efficiency of full time-domain method for anti-shock analysis of controllable pitch propeller shafting and internal oil pipes, this paper proposes a coupled DDAM-time domain calculation method. The internal oil pipes are simplified as additional mass of the shafting system to calculate the benchmark shock spectrum through DDAM. Subsequently, time-domain shock input loads are constructed to perform detailed analysis of internal oil pipes. Taking a naval vessel's controllable pitch propeller shafting and its internal oil pipes as research objects, this method demonstrates: The coupled approach requires 10 hours of computation time, representing a 67% reduction compared to full time-domain method. The maximum comprehensive stress response of the shafting reaches 391.91 MPa, while the internal oil pipes show maximum stress response of 216.42 MPa, both below material allowable stress values and meeting anti-shock requirements. This study provides an efficient "integrated-distributed" layered calculation approach for shock-resistant design of marine propulsion systems.
2025,47(24): 120-125 收稿日期:2025-1-1
DOI:10.3404/j.issn.1672-7649.2025.24.018
分类号:U664.21
基金项目:国家自然科学基金重点基金项目(51839005);高技术船舶科研专项(K24532-1-2);中国博士后科学基金面上资助(2024M762518)
作者简介:何书浩(2001-),男,硕士研究生,研究方向为船舶动力装置性能分析及振动噪声控制。
参考文献:
[1] 李彦军, 陈旭, 曾庆鹏, 等. 舰船动力设备抗冲击评估方法综述[J]. 中国舰船研究, 2024, 19(3): 61-85.
LI Y J, CHEN X, ZENG Q P, et al. A review on the impact resistance assessment methods for ship power equipment[J]. Chinese Journal of Ship Research, 2024, 19(3): 61-85.
[2] 熊齐鹏, 刘杰, 金勇, 等. 不同抗冲击分析方法对水润滑轴承的适用性分析[J]. 中国舰船研究, 2024, 19(S2): 189-196.
XIONG Q P, LIU J, JIN Y, et al. Applicability of different anti-shock analysis methods to water-lubricated bearings[J]. Chinese Journal of Ship Research, 2024, 19(S2): 189-196.
[3] 刘建湖, 周心桃, 潘建强, 等. 舰艇抗爆抗冲击技术现状和发展途径[J]. 中国舰船研究, 2016, 11(1): 46-56.
LIU J H, ZHOU X T, PAN J Q, et al. The state analysis and technical development routes for the anti-explosion and shock technology of naval ships[J]. Chinese Journal of Ship Research, 2016, 11(1): 46-56.
[4] 张影. 船用齿轮箱抗冲击计算方法分析[D]. 哈尔滨: 哈尔滨工程大学, 2010.
[5] GUO Y, ZHOU R, MA Z, et al. Analysis of the impact resistance characteristics of a power propulsion shaft system containing a high-elasticity coupling[J]. Applied Sciences, 2024, 14(12): 4995-4995.
[6] 夏雪宝, 明志茂, 余云加, 等. 基于DDAM的舰船蓄电池组抗冲击仿真计算[J]. 机械研究与应用, 2023, 36(6): 48-50.
[7] 曹健, 孙锋, 申帅, 等. 基于DDAM的套筒式液压联轴器抗冲击性能及影响因素分析[J]. 舰船科学技术, 2023, 45(10): 51-57.
CAO J, SUN F, SHEN S, et al. Study on influencing of anti-impact performance of sleeve hydraulic coupling based on DDAM[J]. Ship Science and Technology, 2023, 45(10): 51-57.
[8] 侯世红. 基于DDAM方法的某舰载火控雷达抗冲击仿真计算[J]. 机械设计, 2020, 37(7): 87-92.
[9] 王晓欣, 李笑天, 马笑辉, 等. 潜艇设备冲击响应谱谱跌特性数值分析[J]. 中国舰船研究, 2019, 14(3): 31-37.
WANG X X, LI X T, MA X H, et al. Numerical analysis on spectrum dip characteristics of shock response spectrum of submarine equipment[J]. Chinese Journal of Ship Research, 2019, 14(3): 31-37.
[10] 韩江桂, 吴新跃, 贺少华. 船舶推进轴系冲击响应计算方法[J]. 舰船科学技术, 2012, 34(1): 45-49.
HAN J G, WU X Y, HE S H. Calculation method of impact response for ship propulsion shafting system based on DDAM[J]. Ship Science and Technology, 2012, 34(1): 45-49.
[11] 袁倩, 李琼玥, 麻昔. 船用拖曳绞车抗冲击时域分析[J]. 数字海洋与水下攻防, 2021, 4(4): 345-350.
YUAN Q, LI Q Y, MA X. Time-domain analysis on shock resistance ability of marine towing winch[J]. Digital Ocean & Underwater Warfare, 2021, 4(4): 345-350.
[12] WANG Q Y , YU R , CHEN L R. Shock response analysis for a propulsion shaft system in time domain[J]. Applied Mechanics and Materials, 2011, 1287(58-60): 2534-2539.
[13] 国防科学技术工业委员会. 舰船环境条件要求—机械环境: GJB 1060.1 -1991[S]. 北京: 中国标准出版社, 1991.
[14] 中国舰船研究院. 前联邦德国国防军舰艇建造规范: 冲击安全性: BV043-85[S]. 北京: 中国舰船研究院, 1985.
[15] 中国国家标准化管理委员会. 机械产品结构有限元力学分析通用规则: GB/T 33582-2017 [S]. 北京: 中国标准出版社, 2017.