本文设计了一种新型的共振腔型浮式防波堤构型,通过将声学Helmholtz共振腔原理运用其中,设置2个共振腔室,当处于特定的周期时,浮式防波堤腔内流体会与外部流体发生共振,使得入射波能量转化为其他形式的能量,提高消波效果。本研究采用STAR-CCM+数值模拟软件,针对不同结构参数的浮式防波堤开展水动力性能分析,重点考察细颈宽度变化及系泊方式差异对消波效果的影响规律。数值模拟结果显示,与传统方箱式结构相比,具有共振腔特征的浮式防波堤在长周期波浪条件下展现出更为优异的消波性能。值得注意的是,当采用张紧式系泊系统且细颈宽度与堤宽比为0.3时,该型防波堤在长周期波浪作用下的透射系数较悬链线式系泊可显著降低18.56%,这一发现为优化防波堤设计提供重要参考依据。
In this paper, a new resonant cavity type floating breakwater configuration is designed. By applying the acoustic Helmholtz resonant cavity principle and setting two resonant chambers, the fluid in the floating breakwater cavity resonates with the external fluid at a specific period, which converts the incident wave energy into other forms of energy and improves the wave absorbing effect. In this study, STAR-CCM+ numerical simulation software was used to analyze the hydrodynamic performance of floating breakwaters with different structural parameters, focusing on the influence of the change of thin neck width and the difference of mooring mode on the wave absorbing effect. The numerical simulation results show that the floating breakwater with resonant cavity has better wave absorbing performance under long period wave conditions than the traditional square box structure. It is particularly noteworthy that when the tensioned mooring system is used and the ratio of thin neck width to embankment width is 0.3, the transmission coefficient of this type of breakwater under the action of long period waves can be significantly reduced by 18.56% compared with that of catenaed mooring, which provides an important reference for optimizing the design of breakwater.
2025,47(24): 152-158 收稿日期:2025-4-15
DOI:10.3404/j.issn.1672-7649.2025.24.024
分类号:U675.92
基金项目:国家自然科学基金重点项目(52331011)
作者简介:刘维维(1997-),男,硕士,研究方向为船舶与海洋工程
参考文献:
[1] WILLIAMS A N, GEIGER P T, MCDOUGAL W G. Flexible floating breakwater[J]. Journal of Waterway, Port, Coastal, And Ocean Engineering, 1991, 117(5): 429-450.
[2] DROBYSHEVSKI Y. Hydrodynamic coefficients of a two-dimensional, truncated rectangular floating structure in shallow water[J]. Ocean Engineering, 2004, 31(3-4): 305-341.
[3] HONG S Y, KIM J H, CHO S K, et al. Numerical and experimental study on hydrodynamic interaction of side-by-side moored multiple vessels[J]. Ocean Engineering, 2005, 32(7): 783-801.
[4] NING D Z, SHI J, ZOU Q P, et al. Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method)[J]. Energy, 2015, 83: 177-188.
[5] LIU Z Q, WANG Y Z, WANG W, et al. Numerical modeling and optimization of a winglet box-type floating breakwater by smoothed particle hydrodynamics[J]. Ocean Engineering, 1988, 1–20.
[6] JI C Y, CHEN X, CUI J, et al. Experimental study of a new type of floating breakwater[J]. Ocean Engineering, 2015, 105: 295-303.
[7] KOUTANDOS E, PRINOS P, GIRONELLA X. Floating breakwaters under regular and irregular wave forcing: reflection and transmission characteristics[J]. Journal of Hydraulic Research, 2005, 43(2): 174-188.
[8] JI X, LI X, TANG A, et al. Numerical study on the wave attenuation performance of a water ballast type floating breakwater[J]. Ocean Engineering, 2025, 317: 120089.
[9] CHENG Y, FU L, DAI S, et al. Experimental and numerical investigation of WEC-type floating breakwaters: A single-pontoon oscillating buoy and a dual-pontoon oscillating water column[J]. Coastal Engineering, 2022, 177: 104188.
[10] 嵇春艳, 孟小峰, 郭建廷, 等. 不同锚泊方式下浮式防波堤砰击载荷及其运动响应研究[J]. 舰船科学技术, 2021, 43(6): 95-99.
[11] 桂镔, 李志富, 嵇春艳. 腔体共振型浮式防波堤消波性能试验[J]. 船舶工程, 2024, 46(9): 168-177.
[12] ZHAO X, LI Y, ZOU Q, et al. Long wave absorption by a dual purpose Helmholtz resonance OWC breakwater[J]. Coastal Engineering, 2022, 178: 104203.
[13] 沈勇, 郭建廷, 颜威, 等. 局部波浪振荡对浮式防波堤消波效果影响分析[J]. 舰船科学技术, 2021, 43(8): 93-98.
[14] GODA Y, SUZUKI Y. Estimation of incident and reflected waves in random wave experiments[C]//Proceedings of the 15th International Conference on Coastal Engineering. ASCE, 1976.