为提升海底管道巡检系统中无人航行潜水器(ROV)的效率并确保系统稳定运行,构建了多耦合ROV海底管道巡检系统动力学模型。此模型描述了拖船、拖缆与ROV及海洋环境的相互作用,并研究了动态拖缆长度变化及能耗控制,模拟定缆长和变缆长条件下拖缆的力学行为,量化拖缆长度对ROV拉力和速度的影响。结果显示,拖缆长30 m时,能耗较其他长度降低约31%~53%。在固定缆长下,ROV的最优巡航范围为水平位移25.7~30 m,垂直深度–20~–35.6 m,实现约43%的能耗优化。该模型和方法为提高水下系统巡检效率提供了理论指导和参数配置建议。
In order to enhance the efficiency of remotely operated vehicles (ROV) in seabed pipeline inspection systems and ensure stable system operation, a multi-coupled dynamic model for ROV seabed pipeline inspection systems is developed. This model describes the interactions among tugboats, tow cables, ROV, and the marine environment. The study investigates dynamic tow cable length variations and energy consumption control by simulating the mechanical behavior of tow cables under fixed and variable cable length conditions, and quantifying the impact of tow cable length on ROV tension and speed. The results indicate that at a tow cable length of 30 m, energy consumption is reduced by approximately 31% to 53% compared to other lengths. Under fixed cable length conditions, the optimal cruising range of the ROV is between horizontal displacements of 25.7~30 m and vertical depths of –20~–35.6 m, achieving approximately 43% energy optimization. This model and methodology provide theoretical guidance and parameter configuration recommendations for improving the inspection efficiency of underwater systems.
2025,47(24): 169-174 收稿日期:2024-12-23
DOI:10.3404/j.issn.1672-7649.2025.24.027
分类号:U661.33;P754
基金项目:国家自然科学基金资助项目(52301390);山东省自然科学基金资助项目(ZR2022QE072)
作者简介:孙宁松(1973-),男,硕士,高级工程师,研究方向为油气工程(含浅海油田海洋工程)建设管理
参考文献:
[1] 陈荣旗, 雷震名. 中国海底管道工程技术发展与展望[J]. 油气储运, 2022(6): 667-672.
[2] 黄楚雄. 海洋油气管道腐蚀的影响及对策[J]. 当代化工研究, 2024(8): 105-107.
[3] XIA P, YOU H, DU J. Visual-haptic feedback for ROV subsea navigation control[J]. Automation in construction, 2023, 154(10): 104987
[4] 王涛. 水下机器人ROV在石油行业的维修技术研究[J]. 中国石油和化工标准与质量, 2023, 43(19): 184-186.
[5] LI B, HUANG W, LIANG H. An efficient method to assess effect of fin on the course stability of towing system[J]. Ocean Engineering, 2020, 217: 108005.
[6] 郭峰, 毕毅. 船舶拖带情形下的操纵性试验研究[J]. 船海工程, 2007, 36(6): 18-21.
GUO F, BI Y. Experimental study of maneuverability under ship towing[J]. Marine Engineering, 2007, 36(6): 18-21.
[7] 王冲霄, 刘忠乐, 文无敌, 等. 复杂海况下水下拖缆数值分析研究[J]. 海洋工程, 2020, 38(2): 135-142.
[8] 郭力, 袁昱超, 唐文勇, 等. 海洋拖缆平衡位形及振动特性影响因素研究[J]. 船舶力学, 2023, 27(7): 1061-1074.
GUO L, YUAN Y C, TANG W Y, et al. Study on factors affecting the equilibrium positional shape and vibration characteristics of marine towing cables[J]. Journal of Ship Mechanics, 2023, 27(7): 1061-1074.
[9] 杜厚余, 董庆宇, 刘浩, 等. 海洋拖缆非常规交叉感应噪声压制方法及其应用[J]. 石油地球物理探, 2023, 58(S1): 17-22.
[10] 戈亮, 盛世民, 王志斌, 等. 基于AQWA的船舶拖航耦合动力响应分析[J]. 舰船科学技术, 2024, 46(13): 34-38.
GE L, SHENG S M, WANG Z B, et al. Analysis of coupled dynamic response of ship towing based on AQWA[J]. Ship Science and Technology, 2024, 46(13): 34-38.
[11] TIJJANI A S , CHEMORI A , CREUZE V. Robust adaptive tracking control of underwater vehicles: Design, stability analysis, and experiments[J]. Institute of Electrical and Electronics Engineers (IEEE), 2021(2): 3012502.
[12] CHO G R , LEE M J , KANG H, et al. Evaluation of underwater cable burying ROV through sea trial at east sea[J]. IFAC-PapersOnLine, 2020, 53(2): 9658-9663.
[13] 王飞, 丁伟, 邓德衡, 等. 水下多缆多体拖曳系统运动建模与模拟计算[J]. 上海交通大学学报, 2020(5): 441-450.
[14] GUAN G, ZHANG X, WANG Y, et al. Analytical and numerical study on underwater towing cable dynamics under different flow velocities based on experimental corrections[J]. Applied Ocean Research, 2021, 114(7): 102768.
[15] 孙小帅, 马骋, 钱正芳, 等. 波浪中水面船舶与拖曳系统耦合运动特性计算方法研究[J]. 中国造船, 2022, 63(5): 71-81.
SUN X S, MA Z, QIAN Z F, et al. Calculation method of coupled motion characteristics of surface ship and towing system in waves[J]. Shipbuilding of China, 2022, 63(5): 71-81.