传统静态校中方法难以兼顾船舶轴系动态工况下的转速、温度、载荷波动及船体变形等多因素影响,制约了中高转速大功率船舶轴系的运行稳定性。构建涵盖关键动态参数、安全约束条件与加权多目标函数的动态校中数学模型,设计计算机仿真流程,包括精细化几何建模、动态载荷与边界条件施加以及算法改进等,提出基于闭环优化框架的轴承位置与轴系刚度参数优化策略。为验证方法有效性,搭建1∶5比例轴系动态模拟实验台,在多转速工况下开展轴系挠度、轴承反力及振动加速度测试。结果表明所提方法具备良好的准确性与优越性,为船舶轴系动态校中提供完整的理论模型、仿真流程与优化方案。
Traditional static alignment methods fail to take into account multiple factors such as rotational speed, temperature, load fluctuations, and hull deformation under the dynamic operating conditions of marine shafting, which restricts the operational stability of shafting in medium and high-speed, high-power ships. First, a dynamic alignment mathematical model incorporating key dynamic parameters, safety constraints, and a weighted multi-objective function is established. Then, a computer simulation process is designed, including refined geometric modeling, application of dynamic loads and boundary conditions, and algorithm improvement. Additionally, an optimization strategy for bearing positions and shafting stiffness parameters based on a closed-loop optimization framework is proposed. To verify the effectiveness of the proposed method, a 1∶5 scale dynamic simulation test bench for shafting is built, and tests on shafting deflection, bearing reaction force, and vibration acceleration are carried out under multi-speed operating conditions. The results demonstrate that the proposed method exhibits excellent accuracy and superiority, providing a complete theoretical model, simulation process, and optimization scheme for the dynamic alignment of marine shafting.
2025,47(24): 201-205 收稿日期:2025-6-10
DOI:10.3404/j.issn.1672-7649.2025.24.033
分类号:U664.21;TH122
作者简介:周丽华(1980-),女,讲师,研究方向为计算机科学与技术
参考文献:
[1] 郭鹏, 华宏星, 陈锋, 等. 动态因素对轴系校中的影响分析[J]. 噪声与振动控制, 2020, 40(5): 65-70.
GUO P, HUA H X, CHEN F, et al. Analysis of the influence of dynamic factors on shafting alignment[J]. Noise and Vibration Control, 2020, 40(5): 65-70.
[2] 王鹏印, 赵杰, 冯延奇, 等. 大型LNG船舶双轴系动态校中计算方法研究[J]. 船舶, 2025, 36(1): 97-105.
WANG P Y, ZHAO J, FENG Y Q, et al. Research on dynamic alignment calculation method for twin shafting of large LNG ships[J]. Ship & Boat, 2025, 36(1): 97-105.
[3] 李泽远, 汪骥, 刘玉君. 考虑船体变形的轴系动态校中算法[J]. 船舶工程, 2018, 40(10): 59-63.
LI Z Y, WANG J, LIU Y J. Shafting dynamic alignment algorithm considering hull deformation[J]. Ship Engineering, 2018, 40(10): 59-63.
[4] 朱杰峰, 金勇, 杨亚婷. 基于联合仿真的轴系动态校中方法[J]. 舰船科学技术, 2022, 44(18): 126-129.
ZHU J F, JIN Y, YANG Y T. Dynamic alignment method of shafting based on co-simulation[J]. Ship Science and Technology, 2022, 44(18): 126-129.
[5] 杨翠平. 舰船轴系动态校中三弯矩方程的应用[J]. 舰船科学技术, 2020, 42(22): 85-87.
YANG C P. Application of three-moment equation in dynamic alignment of ship shafting[J]. Ship Science and Technology, 2020, 42(22): 85-87.
[6] 何江华, 潘伟昌, 罗乐, 等. 轴系动态校中技术在大型船舶上的应用研究[J]. 船舶与海洋工程, 2014(1): 65-69.
HE J H, PAN W C, LUO L, et al. Research on the application of shafting dynamic alignment technology in large ships[J]. Ship and Ocean Engineering, 2014(1): 65-69.