本文采用CFD(计算流体力学)数值计算方法对计及航速方向的三维船首入水砰击历程进行了数值模拟,并开展模型试验验证了数值仿真方法的可靠性,探讨了水平航速,入水速度方向和入水速度幅值对三维船首砰击载荷时间历程和空间分布特性的影响。发现随着水平航速的增加,球艏最低点前侧砰击压力峰值逐渐增大,球艏最低点后侧砰击压力峰值逐渐减小;入水速度幅值不变,球艏最大砰击压力出现位置会随着入水速度方向的变化而发生改变;入水速度方向不变,球艏砰击压力峰值随着入水速度幅值的增加而增大。在计及水平航速下的船舶结构设计中应重点关注船首中纵剖线前侧及球鼻艏底部结构的承载能力,适当降低船首后侧较高处局部结构物的强度要求。
This paper employs Computational Fluid Dynamics (CFD) numerical methods to simulate the three-dimensional bow slamming process accounting for navigation speed direction. Experimental validation confirms the reliability of the numerical simulations. The research investigates the effects of horizontal navigation speed, entry velocity direction, and entry velocity magnitude on the temporal evolution and spatial distribution characteristics of bow slamming loads. Key findings include: 1) As horizontal speed increases, the peak slamming pressure gradually rises at the front side of the bulbous bow's lowest point while decreasing at its rear side; 2) With constant entry velocity magnitude, the location of maximum slamming pressure shifts along the bulbous bow as the entry velocity direction changes; 3) Maintaining a fixed entry direction, the peak slamming pressure increases with entry velocity magnitude. For ship structural design considering horizontal navigation speed, particular attention should be paid to the load-bearing capacity of structures at the front side of the bow's central longitudinal section line and the bottom area of the bulbous bow, while appropriately reducing strength requirements for higher-positioned local structures at the bow's rear section.
2026,48(1): 9-18 收稿日期:2025-3-28
DOI:10.3404/j.issn.1672-7649.2026.01.002
分类号:U661.4
基金项目:基础加强计划重点基础研究资助项目(2020-JCJQ-ZD-225·11)
作者简介:黄文斗(1999-),男,硕士研究生,研究方向为船舶与海洋工程结构安全性与可靠性
参考文献:
[1] KARMAN V. The impact on seaplane floats during landing[R]. Technical Report 321, NACA, 1929.
[2] WAGNER H. Uber stoss-und gleitvergange an der oberflache von flussigkeiten[J]. Zeitschrift fuer Angewandte Mathematik und Mechanik, 1932, 12(4): 193-215.
[3] AHMED S, AMIN W, RANMUTHUGALA D, et al. Numerical prediction of symmetric water impact loads on wedge shaped hull form using CFD[J]. World Journal of Mechanics, 2013, 3(8): 311-318.
[4] WANG S , LUO H B , GUEDES S C. Numerical prediction of slamming loads during water entry of bow-flared sections [J]. The Transactions of the Royal Institution of Naval Architects Part A: International journal of maritime engineering , 2014, 156(4): 303-314.
[5] 于鹏垚, 卢雷, 甄春博, 等. 船首外飘砰击载荷的数值预报[J]. 舰船科学技术, 2018, 40(3): 35-41.
YU P Y, LU L, ZHEN C B, et al. Numerical prediction of bowflare slamming loads[J]. Ship Science and Technology, 2018, 40(3): 35-41.
[6] WANG Q, ZHANG B, YU P, et al. Numerical investigation on the water entry of several different bow-flared sections[J]. Applied Sciences, 2020, 10(7952): 1454-5101
[7] XIE H, LIU X Y, ZHANG Z J, et al. Methodology of evaluating local dynamic response of a hull structure subjected to slamming loads in extreme sea[J]. Ocean Engineering, 2021, 239(7): 109763.
[8] ZHAO R, FALTINSEN O, AARSNES J. Water entry of arbitrary two-dimensional sections with and without flow separation[C]//Proceedings of the 21st symposium on naval hydrodynamics, 1996.
[9] 曹正林. 高速三体船砰击强度研究[D]. 武汉: 武汉理工大学, 2008.
[10] SWIDAN A, THOMAS G, PENESIS I, et al. Wetdeck slamming loads on a developed catamaran hullform – experimental investigation.[J]. Ships & Offshore Structures, 2017, 12(5): 653-661.
[11] WANG Q, YU P Y, CHANG X, et al. Research on the bow-flared slamming load identification method of a large container ship.[J]. Ocean Engineering, 2022, 266(4): 113-142.
[12] WANG Y W, WANG M Z, ZHENG C, et al. Experimental investigation of slamming impact on fiber-reinforced composite sandwich bow structure[J]. Ocean Engineering, 2025, 319: 120162.
[13] 吴巧瑞, 陈明辉, 张珍, 等. 基于重叠网格法的结构物入水砰击研究[J]. 中国造船, 2022, 63(1): 102-112.
WU Q R, CHEN M H, ZHANG Z, et al. Research on water slamming of structures based on overlapping grid method[J]. Shipbuilding of China, 2022, 63(1): 102-112.
[14] 王志东, 钱进, 凌宏杰等. 基于重叠网格的救生艇抛落入水全过程数值预报方法研究[J]. 中国造船, 2020, 61(S2): 330-339.
Wang Z D, Qian J, Lin H J, et al. Research on numerical prediction method for the whole process of throwing lifeboat into water based on overlapping grid[J]. Shipbuilding of China, 2020, 61(S2): 330-339.