为研究液舱受不同自由度方向激励下的晃荡行为,以矩形液舱为研究对象,开展了横波和法拉第纵波激励下的晃荡研究。为此建立了基于计算流体力学的数值模型,依次分析了液舱在围绕一阶共振的系列横波激励及3种不稳定模式的纵波频率下波面幅值与舱壁压强的变化特点,并进行时–频域的综合分析。结果显示,随着横波激励接近晃荡中心,非线性作用愈加显著,压力频谱向低阶自耦区转移并参与更多非线性效应。而对于纵波激励,液舱对谐波和超谐波激励不敏感,在法拉第次谐波激励下,液舱随时间累积产生强烈晃荡,并激发出一阶模态的主参数晃荡。在主参数晃荡的影响下,二阶压力频谱在自耦合区表现出强烈的非线性特征,并叠加生成了四阶频的成分。
To investigate the sloshing behavior of liquid tanks under excitations in different degrees of freedom, a rectangular liquid tank was selected as the research object, and sloshing under transverse wave and Faraday longitudinal wave excitations was studied. A numerical model based on computational fluid dynamics (CFD) was established to analyze the variations in free surface amplitude and wall pressure under a series of transverse wave excitations near the first-order resonance and three unstable modes of longitudinal wave frequencies. A comprehensive time-frequency-frequency domain analysis was conducted.The results indicate that as the transverse wave excitation approaches the sloshing center, nonlinear effects become more pronounced, leading to a shift of the pressure spectrum toward the lower-order self-coupling region, engaging more nonlinear interactions. For longitudinal wave excitation, the liquid tank exhibits insensitivity to harmonic and superharmonic excitations, while under Faraday subharmonic excitation, intense sloshing accumulates over time, exciting the first-mode parametric sloshing. Under the influence of parametric sloshing, the second-order pressure spectrum exhibits strong nonlinear characteristics in the self-coupling region, with the additional generation of fourth-order frequency components.
2026,48(1): 19-26 收稿日期:2025-3-4
DOI:10.3404/j.issn.1672-7649.2026.01.003
分类号:U663.8
基金项目:江苏省科技成果转化专项资金咨助项目(BA2022014)
作者简介:谭志荣(1978-),男,博士,副教授,研究方向为载运工具运用工程
参考文献:
[1] IBRAHIM R A. Recent advances in physics of fluid parametric sloshing and related problems[J]. Journal of Fluids Engineering, 2015, 137(9): 90-118.
[2] 方译彩, 朱仁庆, 卢莉莉. 舱内双层液体晃荡特性分析[J]. 船舶工程, 2024, 46(2): 56-63.
FANG Y C, ZHU R Q, LU L L. Analysis of sloshing characteristics of double-layer liquid in tank[J]. Ship Engineering, 2024, 46(2): 56-63.
[3] 吴一唯, 周军, 李辉, 等. 基于VOF法的不同形状液舱晃荡数值模拟[J]. 舰船科学技术, 2022, 44(8): 84-89.
WU Y W, ZHOU J, LI H, et al. Numerical simulation of sloshing in liquid tanks of different shapes based on the VOF method[J]. Ship Science and Technology, 2022, 44(8): 84-89.
[4] 李兴盛, 李晓晨, 李靖. 基于Floquet理论的二维水槽中法拉第波线性稳定性分析[C]//中国力学学会流体力学专业委员会. 第十二届全国流体力学学术会议摘要集. 上海交通大学船舶海洋与建筑工程学院船舶与海洋工程系;华南理工大学土木与交通学院船舶与海洋工程系, 2022.
[5] 王志亮. 充液椭球形Cassini贮箱液体非线性晃动特性试验研究[D]. 北京: 中国科学院大学, 2023.
[6] LUO H L, WU W J, JIANG B C, et al. Experiments and analysis of dynamic characteristics of liquid sloshing in horizontal Cassini tank[J]. Physica Scripta, 2023, 98(7): 75-98.
[7] CAO Z X, XUE M A, YUAN X L, et al. A fast semi-analytic solution of liquid sloshing in a 2-D tank with dual elastic vertical baffles and walls[J]. Ocean Engineering, 2023, 113951.
[8] LIU D M , LIN P Z. Interface instabilities in Faraday waves of two-layer liquids with free surface[J]. Journal of Fluid Mechanics, 2022, 941(5): 259-289.
[9] 马玉祥. 基于连续小波变换的波浪非线性研 [D]. 大连: 大连理工大学, 2010.
[10] 于曰旻. 高载液率下矩形液舱晃荡的1阶共振[J]. 船舶工程, 2022, 44(6): 61-64.
YU Y M. First-order resonance of rectangular liquid tanks with high filling ratio[J]. Ship Engineering, 2022, 44(6): 61-64.
[11] 王立时, 李遇春, 张皓. 二维晃动自然频率与阻尼比系数的试验识别[J]. 振动与冲击, 2016, 35(8): 173-176.
WANG L S, LI Y C, ZHANG H. Experimental identification of natural frequency and damping coefficient of 2D sloshing[J]. Journal of Vibration and Shock, 2016, 35(8): 173-176.
[12] 谢梦斌, 朱汉华. 充注工况下FSRU液货舱内部扰动的数值模拟[J]. 船舶力学, 2023, 27(3): 359-368.
XIE M B, ZHU H H. Numerical simulation of disturbance in FSRU cargo tank under filling conditions[J]. Journal of Ship Mechanics, 2023, 27(3): 359-368.
[13] 张会霞, 李师, 邹昶方, 等. 横摇-横荡复合激励下液舱晃荡的压力特性[J]. 广东海洋大学学报, 2023, 43(1): 111-118.
ZHANG H X, LI S, ZOU C F, et al. Pressure characteristics of sloshing in liquid tank under combined roll and sway excitations[J]. Journal of Guangdong Ocean University, 2023, 43(1): 111-118.
[14] 薛米安, 罗铆钧, 苑晓丽. 密度分层液体晃荡非线性相互作用机理研究[J]. 大连理工大学学报, 2021, 61(3): 297-305.
XUE M A, LUO M J, YUAN X L. Study on the nonlinear interaction mechanism of density-stratified liquid sloshing[J]. Journal of Dalian University of Technology, 2021, 61(3): 297-305.
[15] ZHANG Z , WU Q , XIE Y, et al. Experimental and numerical investigations on the liquid tank sloshing in regular waves[J]. Ocean Engineering, 2023, 271(3): 113-126.
[16] 刘玉龙, 滕斌. 浮箱运动与液舱晃荡的变波幅耦合试验[J]. 船舶工程, 2022, 44(5): 71-74.
LIU Y L, TENG B. Coupling experiment of floating box motion and liquid tank sloshing with varying wave amplitudes[J]. Ship Engineering, 2022, 44(5): 71-74.
[17] FALTISENN O M, TIMOKHA A N. Sloshing[M]. Cambridge: Cambridge University Press, 2009.
[18] 孔耀华, 齐野含, 李厚蓉, 等. 浅水液舱侧壁开孔箱体抑制晃荡的试验研究[J/OL]. 工程力学, 1-10 [2025-03-03].
KONG Y H, QI Y H, LI H R, et al. Experimental study on sloshing suppression in shallow water tanks with sidewall-perforated structures [J/OL]. Engineering Mechanics, 1-10 [2025-03-03].
[19] LIU D M, LIN P Z. A numerical study of three-dimensional liquid sloshing in tanks[J]. Journal of Computational Physics, 2008, 227: 3921-3939.
[20] 张珍. 基于FVM方法的液舱晃荡动力学分析[D]. 舟山: 浙江海洋大学, 2022.
[21] 蒋梅荣, 任冰, 李小超, 等. 有限液深下弹性侧壁液舱内晃荡共振特性实验研究[J]. 大连理工大学学报, 2014, 54(5): 558-567.
JIANG M R, REN B, LI X C, et al. Experimental study on sloshing resonance characteristics in a liquid tank with elastic sidewalls under finite liquid depth[J]. Journal of Dalian University of Technology, 2014, 54(5): 558-567.
[22] LIU Z, FENG Y Y, LEI G, et al. Sloshing hydrodynamic performance in cryogenic liquid oxygen tanks under different amplitudes[J]. Applied Thermal Engineering, 2019, 150: 359-371.