为研究截流板对高速滑行艇在静水直航条件下运动姿态(纵倾、升沉)及阻力性能的影响,基于STAR-CCM+建立了数值计算方法。本文系统分析了高速滑行艇从排水型航态过渡到滑行型航态的10种航速下,截流板不同伸缩量对艇体姿态及阻力性能的影响规律。研究结果表明,随着航速的提升和截流板伸缩量的增加,艇体的纵倾角和升沉量均显著减小;同时,截流板的减阻效果存在一个“最佳伸缩量”,此时纵倾角控制在1.5°~3°。在10种航速下,截流板的平均减阻率约为8.11%,其中在30 kn航速时,最大减阻率可达18.91%。此外,截流板的应用还显著降低了船体两侧及船尾的行波波幅,进一步优化了艇体的流体动力性能,为高速滑行艇截流板的设计与优化提供了理论依据和数值参考。
To investigate the influence of interceptors on the motion attitude (trim and sinkage) and resistance performance of high-speed planing craft under calm water conditions, a numerical simulation method was established based on STAR-CCM+. The study systematically analyzed the effects of different interceptor extensions on the hull attitude and resistance performance across 10 speeds, ranging from displacement to planing modes. The results show that as the speed increases and the interceptor extension enlarges, both the trim angle and sinkage amplitude of the craft decrease significantly. Additionally, the interceptor exhibits an "optimal extension range" for drag reduction, with the trim angle controlled between 1.5° and 3°. Under the 10 tested speeds, the average drag reduction rate achieved by the interceptor is approximately 8.11%, with a maximum drag reduction rate of 18.91% at 30 knots. Furthermore, the application of the interceptor significantly reduces the wave amplitudes at the sides and stern of the hull, further optimizing the hydrodynamic performance of the craft. This study provides theoretical insights and numerical references for the design and optimization of interceptors on high-speed planing craft.
2026,48(1): 27-34 收稿日期:2025-4-7
DOI:10.3404/j.issn.1672-7649.2026.01.004
分类号:U675
作者简介:刘天宇(1999-),男,硕士,助理工程师,研究方向为计算流体力学
参考文献:
[1] 郭军, 扈喆, 陈作钢, 等. 带截流板的滑行艇阻力性能数值优化[J]. 中国造船, 2022, 63(6): 122-132
GUO J, HU Z, CHEN Z G, et al. Numerical optimization of resistance performance for planing craft with interceptors[J]. Shipbuilding of China, 2022, 63(6): 122-132
[2] 齐健璋, 毛筱菲. 基于CFD的波浪中截流板减阻效果研究[J]. 武汉理工大学学报(交通科学与工程版), 2022, 46(6): 1044-1050.
QI J Z, MAO X F. Research on drag reduction effect of interceptors in waves based on CFD[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2022, 46(6): 1044-1050.
[3] 胡帆, 陈建勇, 熊小青, 等. 豪华邮轮全船线型优化及截流板设计[J]. 舰船科学技术, 2024, 46(7): 35-41.
HU F, CHEN J Y, XIONG X Q, et al. Hull form optimization and interceptor design for luxury cruise ships[J]. Ship Science and Technology, 2024, 46(7): 35-41.
[4] 曹辰泽, 何炎平, 王梓, 等. 扰流板对深吃水圆筒型平台涡激运动的抑制效果研究[J]. 舰船科学技术, 2023, 45(11): 106-112.
CAO C Z, HE Y P, WANG Z, et al. Research on the suppression effect of spoilers on vortex-induced motion of deep-draft cylindrical platforms[J]. Ship Science and Technology, 2023, 45(11): 106-112.
[5] 卜家斌, 秦江涛, 马健, 等. 单体高速船截流板减阻的浅水特性分析[J]. 中国舰船研究, 2024, 19(4): 219-226.
BU J B, QIN J T, MA J, et al. Analysis of shallow water characteristics for drag reduction of interceptors on monohull high-speed vessels[J]. Chinese Journal of Ship Research, 2024, 19(4): 219-226.
[6] 宋科委, 龚杰, 杨海燕, 等. 阻流板对规则波中船舶阻力及运动特性影响研究[J]. 中国舰船研究, 2024, 19(S1): 28-34.
SONG K W, GONG J, YANG H Y, et al. Research on the influence of interceptors on ship resistance and motion characteristics in regular waves[J]. Chinese Journal of Ship Research, 2024, 19(S1): 28-34.
[7] 王慧, 倪其军, 李胜忠, 等. 水面水下两用艇艇型设计及其水面阻力性能CFD预报分析[J]. 舰船科学技术, 2019, 41(13): 60-66.
WANG H, NI Q J, LI S Z, et al. Hull form design and CFD prediction analysis of surface resistance performance for amphibious crafts[J]. Ship Science and Technology, 2019, 41(13): 60-66.
[8] 申云磊, 高霄鹏, 霍聪. 阻流板对滑行艇阻力性能的影响[J]. 舰船科学技术, 2020, 42(5): 30-33.
SHEN Y L, GAO X P, HUO C. Influence of interceptor plates on the resistance performance of planing crafts[J]. Ship Science and Technology, 2020, 42(5): 30-33.
[9] 朱锋, 陈嘉伟, 何术龙, 等. 带阻流板的高速深V艇减阻机理研究[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(6): 1007-1011.
ZHU F, CHEN J W, HE S L, et al. Research on drag reduction mechanism of high-speed deep-V craft with interceptors[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2019, 43(6): 1007-1011.
[10] 邓锐, 黄德波, 周广利, 等. 阻流板水动力机理的初步计算研究[J]. 船舶力学, 2012, 16(7): 740-749.
DENG R, HUANG D B, ZHOU G L, et al. Preliminary computational study on hydrodynamic mechanism of interceptors[J]. Journal of Ship Mechanics, 2012, 16(7): 740-749.
[11] AVCI A G, BARLAS B. An experimental investigation of interceptors for a high speed hull[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 256-273.
[12] SUNEELA J, KRISHNANKUTTY P, ANANTHA S V. Numerical investigation on the hydrodynamic performance of high-speed planing hull with transom interceptor[J]. Ships and Offshore Structures, 2020, 15: 1-9.
[13] MANSOORI M, FERNANDES A C. The interceptor hydrodynamic analysis for controlling the porpoising instability in high speed crafts[J]. Applied Ocean Research, 2016, 57: 40-51.
[14] OOSSANEN P V, HEIMANN J, HENRICHS J, et al. Motor yacht hull form design for tfie displacement to semi-displacement speed range[C]//10th International Conference on Fast Sea Transportation, 2009.
[15] 王亮. 船舶螺旋桨变参数水动力性能研究[D]. 大连: 大连理工大学, 2012.
[16] LARSSON L , STERN F , VISONNEAU M. Numerical ship hydrodynamics - an assessment of the gothenburg 2010 Workshop[J]. Springer, 2005.