为提高舰船结构的抗爆性能,开展了夹芯结构在水下爆炸载荷作用下的抗爆机理研究,系统分析了芯层构型、炸药当量和爆距对结构抗爆性能的动态响应规律。首先,采用LS-DYNA数值仿真软件基于流固耦合方法建立了内凹蜂窝、双箭头和波纹板夹芯结构数值仿真模型;然后,通过与文献抗爆性能试验结果进行对比,验证水下爆炸数值仿真方法的有效性;最后,基于该数值仿真方法开展了不同爆距、不同炸药当量作用下3种夹芯结构的水下抗爆性能研究。结果发现,在相同重量条件下波纹板、内凹蜂窝和双箭头3种夹芯结构,在不同炸药当量和不同爆距影响下内凹蜂窝夹芯结构背爆面中心点均表现出最小变形,具有更优的抗爆性能。
In order to improve the anti-explosion performance of the ship structure, the anti-explosion mechanism of the sandwich structure under the underwater explosion was studied, and the dynamic response law of core configuration, explosive equivalent and detonation distance to the anti-explosion performance of the structure was systematically analyzed. Firstly, the LS-DYNA numerical simulation software was used to establish a numerical simulation model of concave honeycomb, double arrow and corrugated plate sandwich structure based on the fluid-structure interaction method. Then, by comparing with the test results of anti-explosion performance in the literature, the effectiveness of the numerical simulation method for underwater explosion is verified. Finally, based on the numerical simulation method, the underwater anti-explosion performance of three sandwich structures under different explosion distances and different explosive equivalents was studied. The results show that under the same weight conditions, the three sandwich structures of reentrant honeycomb, double arrow and corrugated core all show the minimum deformation at the center point of the back explosion surface of the reentrant honeycomb sandwich structure under the influence of different explosive yields and different explosion distances, and have better anti-explosion performance.
2026,48(1): 35-41 收稿日期:2025-3-31
DOI:10.3404/j.issn.1672-7649.2026.01.005
分类号:U661;O382
作者简介:陈思远(1994-),男,硕士,工程师,研究方向为舰船结构抗爆抗冲击
参考文献:
[1] 李闯闯, 张兆龙, 夏玮, 等. 冲击波载荷下复合夹芯结构能量耗散特性研究[J]. 舰船科学技术, 2024, 46(20) : 17-22
LI C C, ZHANG Z L, XIA W, et al, Damage characteristics of composite sandwich structure subjected to underwater explosive shock wave loading [J]. Ship Science and technology, 2024, 46(20) : 17-22
[2] 张栗铭, 杨德庆. 力学与声学超材料在船舶工程中的应用研究综述[J]. 中国舰船研究, 2023, 18(2): 1-19.
ZHANG L M, YANG D Q. Review on the applied research of mechanical and acoustic metamaterials in ship engineering[J]. Chinese Journal of Ship Research, 2023, 18(2): 1-19.
[3] 王嘉捷, 刘文韬, 张梁, 等. 船用PVC夹芯板在近场水下爆炸作用下的吸能特性[J]. 舰船科学技术, 2022, 44(22): 7-12.
WANG J J, LIU W T, ZHANG L, et al. Energy absorption characteristics of marine PVC sandwich panel subjected to near-field underwater explosion[J]. Ship Science and technology, 2022, 44(22): 7-12.
[4] 侯海量, 王克, 柴崧淋, 等. 水下接触爆炸下夹芯式防雷舱抗爆效能研究[J]. 船舶力学, 2023, 27(10): 1550-1561.
HOU H L, WANG K, CHAI S L, et al. Anti-knock efficiency of sandwich defensive structures subjected to underwater contact explosion[J]. Journal of Ship Mechanics, 2023, 27(10): 1550-1561.
[5] 柴崧淋, 侯海量, 金键, 等. 水下接触爆炸下舷侧防雷舱吸能结构形式试验研究[J]. 兵工学报, 2022, 43(6) : 1395-1406.
CHAI S L, HOU H L, JIN J, et al. Experimental Study on the Energy absorbing Structure of Broadside Defense Cabin Subjected to Underwater Contact Explosion [J], Acta Armamentarii, 2022, 43(6) : 1395-1406.
[6] 宫晓博, 刘宇鸿, 于昌利. 不同泊松比蜂窝夹芯结构的抗爆性能对比分析[J] . 哈尔滨工程大学学报, 2022, 43(10) : 1399-1405.
GONG X B, LIU Y H, YU C L, Comparative analysis of explosion resistance of honeycomb sandwich structures with different Poisson's ratios[J] . Journal of Harbin Engineering University, 2022, 43(10) : 1399-1405.
[7] 张豪, 常白雪, 赵凯, 等. 三种蜂窝夹芯板的抗爆性能分析[J]. 北京理工大学学报, 2022, 42(6): 557-566.
ZHANG H, CHANG B X, ZHAO K, et al. Anti-explosion analysis of honeycomb sandwich panels with three kinds of core structures[J]. Transactions of Beijing Institute of Technology, 2022, 42(6): 557-566.
[8] 白若阳, 李富荣, 荣吉利, 等. 水下爆炸载荷下多层金字塔夹芯板动态响应研究[J]. 北京理工大学学报, 2023, 43(3): 230-239.
BAI R Y, LI F R, RONG J L, et al. Research on dynamic response of multilayer pyramid sandwich panel subjected to underwater explosion[J]. Transactions of Beijing Institute of Technology, 2023, 43(3): 230-239.
[9] 赵相江, 马小敏, 李世强, 等. 爆炸载荷下双层梯度夹芯板的抗爆性能[J]. 太原理工大学学报, 2021, 52(6): 1022-1028.
ZHAO X J, MA X M, LI S Q, et al. The explosion resistance of double-layer honeycomb sandwich panel under blast load[J]. Journal of Taiyuan University of Technology, 2021, 52(6): 1022-1028.
[10] 孙晓旺, 陶晓晓, 王显会, 等. 负泊松比蜂窝材料抗爆炸特性及优化设计研究[J]. 爆炸与冲击, 2020, 40(9): 66-76.
SUN X W, TAO X X, WANG X H, et al. Research on explosion-proof characteristics and optimization design of negative Poisson's ratio honeycomb material[J]. Explosion and Shock Waves, 2020, 40(9): 66-76.
[11] 邓小林, 刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析[J]. 振动与冲击, 2017, 36(13): 103-109+154.
DENG X L, LIU W Y. In-plane impact dynamic analysis for a sinusoidal curved honeycomb structure with negative poisson's ratio[J]. Journal of Vibration and Shock, 2017, 36(13): 103-109+154.
[12] 章帅帅, 刘均, 张攀, 等. 空爆载荷下碳纤维梯形波纹夹芯结构响应分析[J]. 中国舰船研究, 2023, 18(2): 28-37.
ZHANG S S, LIU J, ZHANG P, et al. Response of carbon fiber trapezoidal corrugated sandwich structure under air explosion loading[J]. Chinese Journal of Ship Research, 2023, 18(2): 28-37.
[13] 丁鹏龙, 成应晋, 俞俊, 等. 夹芯板抗爆性能试验与数值模拟[J]. 中国造船, 2021, 62(4): 52-64.
DING P L, CHENG Y J, YUN J, et al. Experimental research and numerical simulation of corrugated sandwich panel under explosion load[J]. Shipbuilding of China, 2021, 62(4): 52-64.
[14] REN L J, MA H H, SHEN Z W, et al. Blast response of water-backed metallic sandwich panels subject to underwater explosion – Experimental and numerical investigations[J]. Composite Structures, 2019, 209: 79-92.
[15] REN L J, MA H H, SHEN Z W, et al. Blast resistance of water-backed metallic sandwich panels subjected to underwater explosion[J]. International Journal of Impact Engineering, 2019, 129: 1-11.