低温环境可能导致极地船舶舷侧压载水舱内产生结冰现象,为了模拟舷侧压载舱结冰过程,本文采用多物理场仿真建模软件Comsol Multiphysics开展舱内水冰相变过程研究及参数敏感性分析。基于水结冰相变计算方法,建立极地船舶压载舱传热仿真模型,模拟压载舱内结冰相变过程,计算温度场和冻结状态的时空分布,最后分析舱内液位高度、外界和船体内部空气温度对压载舱内冻结行为的影响。结果表明,外界低温冷空气是舱内压载水降温结冰的主要控制因素,舱内液位越高,外界气温越低,舱内压载水结冰速率和冻结程度越高,船体内部气温越高,越不利于压载水冻结。基于水结冰相变计算方法的多物理场仿真能够较好地模拟极地船舶舷侧舱内压载水温度场和冻结状态的时空变化规律,为极地船舶压载水舱结构设计和防结冰措施制定提供技术参考。
Low temperature environment may cause freezing in the side ballast tank of polar ships. This paper aims at simulating the freezing process in the side ballast tank. The multi-physics filed simulation modeling software COMSOL Multiphysics was used in this article to study the water ice phase transition process and parameter sensitivity analysis in ballast tank. Based on the calculation method of water ice phase change, a simulation model of heat transfer in side ballast tank of polar ship was established to simulate the freezing phase change process. The temperature field and spatiotemporal distribution of freezing state were calculated, and finally, the influence of the liquid level height inside the tank, external and internal air temperature of the ship on the freezing behavior inside the ballast tanks is analyzed. The results indicated that low-temperature cold air from the outside is the main controlling factor for the cooling and freezing of ballast water in the ballast tank. The higher the liquid level in the tank, the lower the outside temperature, and the higher the freezing rate and degree of ballast water in the cabin. The higher the temperature inside the ship, the more unfavorable it is for ballast water to freeze. The multi physics field simulation based on the calculation method of water freezing phase change can effectively simulate the spatiotemporal variation of the temperature field and freezing state of the ballast water in the side cabin of polar ships, providing technical references for the structure design and anti-freezing measures of ballast tanks in polar ships.
2026,48(1): 50-57 收稿日期:2025-3-4
DOI:10.3404/j.issn.1672-7649.2026.01.007
分类号:U663.85
基金项目:中国船舶科学研究中心稳定支持项目(WDZC70202030204)
作者简介:金星瑜(1996-),男,硕士,工程师,研究方向为船舶结构安全性与优化设计
参考文献:
[1] 党学博, 李怀印. 北极海洋工程模式及关键技术装备进展[J]. 石油工程建设, 2016, 42(4): 1-6.
DANG X B, LI H Y. Offshore engineering modes and key technologies in arctic[J]. Petroleum Engineering Construction, 2016, 42(4): 1-6.
[2] 寿建敏. 我国极地航运能力建设和高冰级船队发展对策分析[J]. 极地研究, 2018, 30(4): 419-428.
SHOU J M. Building polar shipping capacity and developing a high ice class flotilla in China[J]. Chinese Journal of Polar Reasearch, 2018, 30(4): 419-428.
[3] 张祎轩, 刘涛, 刘耀虎, 等. 极地航行船舶防覆冰涂层研究进展[J]. 表面技术, 2024, 53(6): 1-10.
ZHANG Y X, LIU T, LIU Y H, et al. Research progress on anti-icing coatings for polar ships[J]. Surface Technology. 2024, 53(6): 1-10.
[4] 阎晓丽. 极地多用途集装箱船液舱及管系防冻设计技术探讨[J]. 广东造船, 2017, 36(6): 31-32+16.
YAN X L. Anti-icing technique for liquid tanks and pipes of polar multi-purpose container vessel[J]. Guangdong Shipbuilding, 2017, 36(6): 31-32+16.
[5] 韩端锋, 王永魁, 鞠磊, 等. 海水结冰过程中冰晶生长的相场模拟[J]. 哈尔滨工程大学学报, 2020, 41(1): 1-8.
HAN D F, WANG Y K, JU L. Phase field simulation of ice crystal growth in seawater freezing process[J]. Journal of Harbin Engineering University, 2020, 41(1): 1-8.
[6] 谢强, 陈海龙, 章继峰. 极地航行船舶及海洋平台防冰和除冰技术研究进展[J]. 中国舰船研究, 2017, 12(1): 45-53.
XIE Q, CHEN H L, ZHANG J F. Research progress of anti-icing/deicing technologies for polar ships and offshore platforms[J]. Chinese Journal of Ship Research, 2017, 12(1): 45-53.
[7] 沈杰, 白旭. 基于Fluent和FENSAP-ICE的极区海洋平台甲板结构结冰数值模拟[J]. 极地研究, 2020, 32(2): 177-183.
SHEN J, BAI X. Numerical simulations of deck structure icing on polar offshore platforms based on fluent and FENSAP-ICE[J]. Chinese Journal of Polar Reasearch, 2020, 32(2): 177-183.
[8] 沈杰, 白旭. 风速对寒区船舶杆件结构霜冰结冰的影响分析[J]. 舰船科学技术, 2020, 42(9): 56-60.
SHEN J, BAI X. Analysis of the influence of wind speed on rime and ice formation ofship's pole structure in cold region[J]. Ship Science and Technology, 2020, 42(9): 56-60.
[9] 余祥虎. LNG船液货舱温度及应力场有限元分析研究[D]. 武汉: 武汉理工大学, 2009.
[10] 李敏. 中小型LNG船C型独立液货舱温度场及应力场分析[D]. 广州: 华南理工大学, 2013