本文提出以趋近预设的剖面积和剖面模数变化百分比为原则的全钢质夹层结构方案初选方法。首先,对夹层结构典型几何参数对剖面特征值的影响进行分析;其次,基于有限元分析软件MSC PATRAN/NATRAN,进行横向均布载荷作用下I型钢质夹层结构的承载特性分析与对比,研究主要设计参数对强度、刚度特性的影响。根据计算结果,对于均布载荷模式,夹层板整体弯曲应力是主要应力成份,远大于面板局部弯曲应力,夹层结构的上下面板和芯板呈整体变形的特点,同时基于多方案仿真分析结果验证了以趋近预设的剖面积和剖面模数变化百分比为原则的初选方法在确定夹层结构设计方案中具有一定的适用性。
Based on the principle of approaching the preset percentage of section area and section modulus, a preliminary selection method for the scheme of all-steel sandwich structure is proposed. Firstly, the influence of typical geometric parameters of sandwich structure on profile characteristic value is analyzed. Secondly, based on the finite element analysis software MSC PATRAN/NATRAN, the bearing properties of type I steel sandwich structures under transverse uniform load are analyzed and compared, and the influence of main design parameters on strength and stiffness characteristics is studied. According to the calculation results, the overall bending stress of the sandwich plate is the main stress component, which is much larger than the local bending stress of the panel based on the uniformly distributed load mode. And the overall deformation of the upper and lower face panels and core plates of the sandwich structure is the main characteristic. At the same time, based on the simulation results of multiple schemes, it is verified that the method has certain feasibility in determining the design scheme of sandwich structure.
2026,48(1): 58-65 收稿日期:2025-2-11
DOI:10.3404/j.issn.1672-7649.2026.01.008
分类号:U663.6
作者简介:闫晋辉(1986-),男,硕士,高级工程师,研究方向为船体结构设计
参考文献:
[1] 王孝宇. 金属夹芯复合船体连接结构设计方案研究[D]. 武汉: 中国舰船研究设计中心, 2023.
[2] 朱杨. 钢质I型、折边型夹层甲板板格力学性能分析与优化设计[D]. 武汉: 华中科技大学, 2013.
[3] 朱杨, 程远胜, 刘均. 激光焊接夹层甲板板格强度计算的子模型方法[J]. 船舶力学, 2014, 36(10): 1228-1236.
ZHU Y, CHENG Y S, LIU J. Sub-model method for strength calculation of a laser-welded steel sandwich panel structure[J]. Journal of Ship Mechanics, 2014, 36(10): 1228-1236.
[4] 雷伟方. 激光焊接I-core全钢三明治板弯曲试验[D]. 兰州: 兰州理工大学, 2013.
[5] 刘伟. 激光焊接I型三明治板的力学行为研究及结构设计[D]. 兰州: 兰州理工大学, 2015.
[6] 周维莉, 孙华银, 李永强. 激光焊接全钢I型三明治板的研究与发展[J]. 产业与科技论坛, 2015, 14(19): 46-47.
[7] 蒋小霞, 胡春生, 黄仁勇, 等. 激光焊接I型全钢三明治板的刚度研究综述[J]. 热加工工艺, 2016, 45(23): 10-13.
JIANG X X, HU C S, HUANG R Y, et al. Review of study on stiffness of laser welded I-core steel sandwich plate[J]. Hot Working Technology, 2016, 45(23): 10-13.
[8] 柯力, 张延昌, 刘昆, 等. 基于铝质夹层板的上层建筑轻量化设计[J]. 船舶, 2019(5): 25-35.
KE L, ZHANG Y C, LIU K, et al. Lightweight design of superstructure based on aluminum sandwich panel[J]. Ship& Boat, 2019(5): 25-35.
[9] 王海洋, 王云霆, 贺远松, 等. 压缩载荷下钢质I型夹层梁极限承载能力分析[J]. 舰船科学技术, 2021, 43(12): 83-87.
WANG H Y, WANG Y T, HE Y S, et al. Research on the ultimate load carrying capacity of metallic I-core sandwich beams under compression loads[J]. Ship Science and Technology, 2021, 43(12): 83-87.
[10] 罗本永, 秦飞. 舰船甲板钢质夹层结构设计[J]. 船舶工程, 2022, 44(3): 34-39.
LUO B Y, QIN F. Design of the steel sandwich structure of a ship deck[J]. Ship Engineering, 2022, 44(3): 34-39.
[11] 朱显玲, 陈艳霞, 梁双令. I型夹芯夹层板入水砰击数值仿真及结构参数化研究[J]. 舰船科学技术, 2020, 42(11): 40-44.
ZHU X L, CHEN Y X, LIANG S L. Numerical simulation and structural parameter study on water entry slamming of I-core sandwich plate[J]. Ship Science and Technology, 2020, 42(11): 40-44.
[12] 赵宸. 多胞元夹层结构在破片及水锤作用下的力学行为[D]. 镇江: 江苏科技大学, 2023.
[13] 蔡思培. 多层波纹金属夹层板冲击性能分析与优化设计研究[D]. 武汉: 华中科技大学, 2021.