船体外板喷涂施工中会产生挥发性有机化合物(VOCs)形成漆雾等有害物质,对人体健康和大气环境造成严重危害,需要及时将扩散漆雾粒子进行回收并提高该过程的效率,因此设计开发了一种组合式漆雾回收装置。针对目前常见的双喷嘴喷漆作业漆雾扩散工况,设计装置由双层隔离罩、真空管道和气幕发生器组成。对装置的作业过程使用计算流体力学方法进行计算仿真和漆雾回收效率评估。结果表明,所开发的组合式漆雾回收装置的效率在使用双层隔离罩和真空管道时能达到75%以上。在回收罩边界增加了气幕发生器,合适的风幕气流速度为5 m/s,将回收效率提高到90%以上。组合式回收装置显著控制了漆雾粒子的外溢,双层隔离罩阻隔了工作区域和真空回收区域,真空管道持续抽吸漆雾粒子,使回收罩内的漆雾污染物排放浓度降低,为后续的废气集中处理提供便利,有效保障了涂装作业人员的健康与周边环境的绿色安全。
During the spraying construction of ship hull outer panels, volatile organic compounds (VOCs) are generated to form harmful substances such as paint mist, which poses a serious threat to human health and atmospheric environment. It is necessary to timely recover the diffused paint mist particles and improve the efficiency of the process. Therefore, a combined paint mist recovery device has been designed and developed. In response to the current common situation of paint mist diffusion in dual nozzle spray painting operations, a device is designed consisting of a double-layer isolation cover, a vacuum pipeline, and an air curtain generator. Computational fluid dynamics methods were used to simulate and evaluate the efficiency of paint mist recovery during the operation process of the device. The results indicate that the efficiency of the developed combined paint mist recovery device can reach over 75% when using double-layer isolation covers and vacuum pipelines. An air curtain generator has been added to the boundary of the recycling hood, with a suitable air curtain airflow velocity of 5m/s, increasing the recycling efficiency to over 90%. The combined recycling device significantly controls the overflow of paint mist particles. The double-layer isolation hood blocks the working area and the vacuum recycling area. The vacuum pipeline continuously sucks in paint mist particles, reducing the emission concentration of paint mist pollutants inside the recycling hood, providing convenience for subsequent centralized treatment of exhaust gas, and effectively ensuring the health of painting workers and the green safety of the surrounding environment.
2026,48(1): 66-71 收稿日期:2025-9-2
DOI:10.3404/j.issn.1672-7649.2026.01.009
分类号:U671;TE991.1
基金项目:国家自然科学基金面上项目(62271187);浙江省中央引导地方科技发展资金(2023ZY1034);中远海运重工项目 (KY24ZG09-01S)
作者简介:翁海龙(1986-),男,工程师,研究方向为船舶工程与技术、超高压高压水射流、油漆技术及装备研发
参考文献:
[1] 武思晨. 船用VOCs冷凝回收实验平台的控制系统设计与研究[D]. 镇江: 江苏科技大学, 2023.
[2] 衣正尧, 林焰, 隋江华, 等. 船舶外板拖涂爬壁机器人设计[J]. 机床与液压, 2020, 48(5): 54-58+24
YI Z Y, LIN Y, SUI J H, et al. Design of a wall climbing robot for drag coating of ship exterior panels[J]. Machine Tool and Hydraulic, 2020, 48(5): 54-58+24
[3] 林焰, 衣正尧, 李玉平, 等. 大型船用坞内外板涂装机器人[J]. 机器人, 2018(1): 14.
LIN Y, YI Z Y, LI Y P, et al. Large scale marine dock inner and outer panel coating robot [J]. Robot, 2018(1): 14.
[4] 王冲, 黄林, 鲁夏阳, 等. 船用环保型爬壁喷漆机器人的设计及应用[J]. 船舶工程, 2024, 46(6): 157-162.
WANG C, HUANG L, LU X Y, et al. Design and application of environmentally friendly wall climbing spray painting robot for ships[J]. Ship Engineering, 2024, 46(6): 157-162.
[5] BIKKULOV R Y, ZINUROV V E, DMITRIEV A V, et al. Evaluation of the efficiency of a multivortex separator for capturing fine particles from gas flowsi the air preparation systemi paint booths[J]. Theoretical Foundations of Chemical Engineering, 2024, 1-5.
[6] 盛卓然, 刘金锋. 面向船舶智能喷涂系统中物料供应平台的避障控制及其仿真[J]. 江苏科技大学学报(自然科学版), 2022, 36(3): 71-78.
SHENG Z R, LIU J F. Obstacle avoidance control and simulation for material supply platform in ship intelligent spraying system[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2022, 36(3): 71-78.
[7] 刘晓宏, 温治, 杜宇航, 等. 基于fluent的气液双流体喷嘴雾化特性研究[J]. 机电工程技术, 2024, 53(3): 26-29.
LIU X H, WEN Z, DU Y H, et al. Research on atomization characteristics of gas-liquid dual fluid nozzle based on Fluent[J]. Mechanical and Electrical Engineering Technology, 2024, 53(3): 26-29.
[8] 谢颖瑶. 喷漆废气治理技术方案研究[J]. 科学技术创新, 2018 (12): 58–59.
XIE Y Y. Research on technical scheme for spray painting waste gas treatment [J]. Science and Technology Innovation 2018 (12): 58–59.
[9] 熊元元, 陈东, 朱雨雷, 等. 船舶自动喷涂机器人VOCs及漆雾回收系统设计[J]. 船海工程, 2025, 54(3): 1-5+12.
XIONG Y Y, CHEN D, ZHU Y L, et al. Design of VOCs and paint mist recovery system for ship automatic spraying robot[J]. Ship & Ocean Engineering, 2025, 54(3): 1-5+12.
[10] 易师, 周益辉, 雷细平, 等. 大型船舶制造涂装废气治理组合工艺和装备设计[J]. 电镀与涂饰, 2024, 43(3): 157-162.
YI S, ZHOU Y H, LEI X P, et al. Design of combined process and equipment for waste gas treatment in large ship manufacturing coating[J]. Electroplating and Coating, 2024, 43(3): 157-162
[11] 曹秉鑫, 张跃. 组合式漆雾和有机废气净化装置的研制[J]. 造船技术, 1991 (1):34–41.
CAO B X, ZHANG Y. Development of a combined paint mist and organic waste gas purification device[J]. Shipbuilding Technology, 1991 (1):34–41.
[12] 李冰. 船舶外板喷涂机器人雾化仿真及漆雾回收优化[D]. 大连: 大连理工大学, 2018.
[13] 刘鹤, 杨云峰, 黄硕, 等. 船舶涂装VOCs回收装置的流场仿真及优化[J]. 船舶工程, 2024, 46(8): 117-125.
LIU H, YANG Y F, HUANG S, et al. Flow field simulation and optimization of ship painting VOCs recycling device[J]. Ship Engineering, 2024, 46(8): 117-125.
[14] 杨学宾, 郝森, 陆华, 等. 一种修船表面喷涂漆雾废气收集罩的设计计算[J]. 船海工程, 2020, 49(4): 82-85.
YANG X B, HAO S, LU H, et al. Design and calculation of a spray paint mist exhaust gas collection cover for ship repair surface[J]. Ship & Ocean Engineering, 2020, 49(4): 82-85.
[15] 孔飞, 张川, 韩俊杰, 等. 迷宫纸盒过滤器过滤效果数值模拟[J]. 现代涂料与涂装, 2020, 23(3): 45-48+51.
KONG F, ZHANG C, HAN J J, et al. Numerical simulation of filtration effect of maze paper box filter[J]. Modern Coatings and Coating, 2020, 23(3): 45-48+51.
[16] SATOH K, KAWAI T, ISHIKAWA M, et al. Development of method for predicting efficiency of oil mist separators (No. 2000-01-1234) [D]. SAE Technical Paper, 2000.
[17] YOO Y L, HAN D H, HONG J S, et al. A large eddy simulation of the breakup and atomization of a liquid jet into a cross turbulent flow at various spray conditions[J]. International Journal of Heat and Mass Transfer, 2017, 112: 97-112.
[18] 赵悦, 武殿梁, 禹文娟, 等. VR环境中船舶交互式喷涂仿真技术研究[J]. 计算机仿真, 2024, 41(10): 284-290.
ZHAO Y, WU D L, YU W J, et al. Research on interactive spray simulation technology for ships in VR environment[J]. Computer Simulation, 2024, 41(10): 284-290.
[19] 周颖娟, 周波, 何家健, 等. 面向船舶的喷涂机器人离线编程技术研究[J]. 计算机技术与发展, 2020, 30(10): 149-153.
ZHOU Y J, ZHOU B, HE J J, et al. Research on offline programming technology for ship oriented spraying robots[J]. Computer Technology and Development, 2020, 30(10): 149-153.
[20] 王东洋, 潘宇晨, 蒙占彬, 等. 面向船舶外板并联式喷涂机器人构型综合[J]. 机械设计与研究, 2022, 38(3): 65-69+74.
WANG D Y, PAN Y C, MENG Z B, et al. Configuration synthesis of parallel spraying robots for ship exterior panels[J]. Mechanical Design and Research, 2022, 38(3): 65-69+74.