本文针对轮缘推进器提出一种新型后置节能定子,并深入分析了有无新型后置定子的轮缘推进器在直流及斜流工况下的非定常流体动力特性。基于STAR-CCM+软件,采用 (SST)k-ω湍流模型对加装新型后置定子前后的轮缘推进器流场进行模拟,重点研究后置定子对推进器轴向和侧向载荷的影响规律。通过快速傅里叶变换进行频域分析,进一步探讨了新型后置定子对推进器转子推力系数频域特性的影响。结果表明,引入后置定子显著增强推进器在斜尾流中的恢复能力;通过有无后置定子的轮缘推进器尾流对比分析,发现后置定子的存在使得推进器尾流的速度流场更加均匀,从而提升了推进器在斜流下的推进性能。
A new type of energy-saving rear stator is proposed for rim-driven thruster (RDT) and the unsteady hydrodynamic characteristics of rim-driven thrusters with and without rear stator are analyzed in depth for both direct and oblique flow conditions in this paper. Based on the STAR-CCM+ software, a (SST)k-ω turbulence model is used to simulate the flow field of the rim-driven thruster before and after the addition of the new rear stator, and the impact of rear stator on the performance of the propeller is primarily investigated, with a special focus on its influence on axial and lateral load patterns. Utilizing Fast Fourier Transform (FFT) frequency domain analysis, the influence of proposed stators on the frequency domain characteristics of the rotor thrust coefficient is further explored. The findings demonstrate that the introduction of new rear stator significantly enhances the propeller's capability to recover in oblique flow conditions. Furthermore, a comparative analysis of the wake flow behind propellers with and without new rear stator reveals that the presence of rear stator leads to a more uniform velocity field in the propeller wake, thereby improving the propulsive performance under oblique flow.
2026,48(1): 107-113 收稿日期:2025-4-2
DOI:10.3404/j.issn.1672-7649.2026.01.015
分类号:U664.3
基金项目:国家自然科学基金资助项目(52101315);江苏海事职业技术学院科研启动基金项目(2025BSKY01,2024BSKY23)
作者简介:李冬琴(1979-),女,博士,教授,研究方向为新船型开发、船舶水动力性能优化
参考文献:
[1] CAI B A, TIAN B B, QIU L Y, et al. Application of the body force method in the Rim-Driven thruster[J]. International Journal of Naval Architecture and Ocean Engineering, 2022, 14: 100476.
[2] YAN X P, LIANG X X, OUYANG W, et al. A review of progress and applications of ship shaft-less Rim-Driven thrusters[J]. Ocean Engineering, 2017(1): 142-156.
[3] LI P, SUN C, YAO H D, et al. The effects of domain division types on the performance prediction of a Rim-Driven thruster[J]. Ocean Engineering, 2023, 287(1): 115809.
[4] LIU B, VANIERSCHOT M, BUYSSCHAERT F. Effects of transition turbulence modeling on the hydrodynamic performance prediction of a Rim-Driven thruster under different duct designs[J]. Ocean Engineering, 2022, 256: 111142.
[5] LIU L L, JIANG W, LIU Z W, et al. Multi-objective optimization of shaftless Rim-Driven thruster based on ISIGHT[J]. Journal of Physics, 2022, 2369(1): 12023.
[6] NIE Y Z, OUYANG W, ZHANG Z, et al. Multi-parameter optimization analysis of hydrodynamic performance for Rim-Driven thruster[J]. Energies, 2023, 16(2): 891.
[7] ZHAI S, JIN S B, CHEN J Q, et al. CFD-based multi-objective optimization of the duct for a Rim-Driven thruster[J]. Ocean Engineering, 2022, 264: 112467.
[8] GAGGERO S. Numerical design of a RIM-Driven thruster using a RANS-Based optimization approach[J]. Applied Ocean Research, 2020, 94: 101941.
[9] 陈振纬, 周赵烨. 基于Ka4-70桨型的轮缘推进器水动力性能分析[J]. 船舶工程, 2023, 45(12): 75-83+93.
CHEN C W, ZHOU Z Y. Hydrodynamic blade design and analysis of Rim-Driven thruster based on Ka4-70 propeller[J]. Ship Engineering, 2023, 45(12): 75-83+93.
[10] 宋科, 杨邦成. 轮缘推进器与导管桨水动力及能量损失特性对比研究[J]. 舰船科学技术, 2023, 45(15): 41-45+80.
SONG K, YANG B C. A comparative study on the hydrodynamics and energy loss characteristics between a rim-driven thruster and a ducted propeller[J]. Ship Science and Technology, 2023, 45(15): 41-45+80.
[11] 宋显成, 赵国平, 苑利维, 等. 轮缘推进器水动力性能影响因素数值研究[J]. 船舶工程, 2020, 42(7): 67-71+163.
SONG X C, ZHAO G P, YUAN L W, et al. Numerical research of hydrodynamic performance impact factors of rim-driven thruster[J]. Ship Engineering, 2020, 42(7): 67-71+163.
[12] 朱斌, 杨君, 黄树权, 等. 船舶水动力节能装置应用研究[J]. 舰船科学技术, 2021, 43(23): 140-144.
ZHU B, YANG J, HUANG S Q, et al. Application of energy saving devices on the ships in service[J]. Ship Science and Technology, 2021, 43(23): 140-144.
[13] 陈昊, 吴炳良, 李冬琴, 等. 轮缘推进器新型桨前附体的水动力性能分析[J]. 舰船科学技术, 2024, 46(21): 47-53.
CHEN H, WU B L, LI D Q, et al. Hydrodynamic performance analysis of a novel appendage based on the rim-driven thruster[J]. Ship Science and Technology, 2024, 46(21): 47-53.
[14] YANG H X, LI D Q, ZHANG F. Numerical analysis of the hydrodynamic performance impact of novel appendage on rim-driven thruster[J]. Journal of Marine Science and Application, 2024, 23(4): 762-775.
[15] JIANG Y C, LI Y K, WU C J, et al. Assessment of RANS and DES turbulence models for the underwater vehicle wake flow field and propeller excitation force[J]. Journal of Marine Science and Technology, 2022, 27: 226-244.
[16] MENTER F R. Two-equation eddy-viscosity transport turbulence model for engineering applications[J]. AIAA Journal, 1994, 32(8): 45-60.
[17] NGUYEN V T, CHANDAR D. Ship specific optimization of pre-duct energy saving devices using reduced order models[J]. Applied Ocean Research, 2023, 131: 103449.
[18] GAGGERO S, RIZZO C M, TANI G, et al. EFD and CFD design and analysis of a propeller in decelerating duct[J]. International Journal of Rotating Machinery, 2012: 1-15.